import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler # 特征预处理
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as opt
import random
# 构建网络结构
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.fp1 = nn.Linear(4, 20)
self.f1 = nn.ReLU()
# fp1 是输入层
self.fp2 = nn.Linear(20, 20)
# fp2 是隐藏层
self.f2 = nn.ReLU()
self.fp3 = nn.Linear(20, 3)
def forward(self, x):
x = self.fp1(x)
x = self.f1(x)
x = self.fp2(x)
x = self.f2(x)
x = self.fp3(x)
return x
def data_loder(data, label, batch_size=12, mode="train"):
# 本来这里还有数据读取的操作 和 数据预处理的操作
# 但是考虑到已经在函数外读取数据了 所以就省略了
# 而且数据是干净的
def gen_loder():
x_list = []
# x_list 就是一个batch组
y_list = []
index_list = list(range(len(data)))
# index_list 里面放的是 数据的索引
if mode == "train":
random.shuffle(index_list)
# 如果他是要训练集的话 那么就打乱数据
for j in index_list:
x_list.append(data[j].astype("float32"))
y_list.append(label[j].astype("int64"))
if len(x_list) == batch_size:
yield np.array(x_list), np.array(y_list)
x_list = []
y_list = []
# 清空x_list y_list
if len(x_list) > 0:
yield np.array(x_list), np.array(y_list)
return gen_loder
def acc(pres, labels):
"""用来计算正确率的"""
result = pres == labels
result = list(result.numpy())
t = result.count(True)
return t / len(labels)
# 获取数据集
iris = load_iris()
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=6)
# 特征工程
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# [120, 4] 有120个数据 4个特征
# numpy 一个值 print ->[8]
# tensor 一个值 print ->tensor([8], dtype = int64)
# 创建模型对象
net = MLP()
# 网络的算子
# 网络的损失函数应该选择什么? 如果是分类问题就选择交叉熵损失函数,如果是回归问题就选择MSE
# 网络的优化器该选择什么?
optm = opt.Adam(net.parameters(), lr=0.0005, weight_decay=2e-5)
epoch = 500
train_loder = data_loder(x_train, y_train)
test_loder = data_loder(x_test, y_test)
best = 0
for i in range(epoch):
net.train()
# 确保模型的参数能够进行更新
for bid, data in enumerate(train_loder()):
input = torch.tensor(data[0])
label = torch.tensor(data[1])
pre = net(input)
loss = F.cross_entropy(pre, label)
pre = torch.argmax(pre, dim=1)
ac = acc(pre, label)
optm.zero_grad()
loss.backward()
optm.step()
print("epoch:{}, bid:{}, loss:{},ac:{}".format(i, bid, loss.cpu().detach().numpy(), ac))
with torch.no_grad():
accd = []
net.eval()
for bid, (data, label) in enumerate(test_loder()):
data = torch.tensor(data)
label = torch.tensor(label)
pre = net(data)
pre = torch.argmax(pre, dim=1)
accd.append(acc(pre, label))
ac = np.array(accd).mean()
print("epoch:{}, ac:{}".format(i, ac))
if ac > best:
best = ac
# torch.save(net.state_dict(), "path")
print("best:{}".format(best))
因篇幅问题不能全部显示,请点此查看更多更全内容