Vol.44,No.5,May2006,387–406
Controlofahydraulicallyactuatedcontinuously
variabletransmission
MICHIELPESGENS*†§,BASVROEMEN†,BARTSTOUTEN‡,FRANSVELDPAUS‡
andMAARTENSTEINBUCH‡
†DrivetrainInnovationsb.v.,Horsten1,5612AX,TheNetherlands
‡TechnischeUniversiteitEindhoven,POBox513,5600MBEindhoven,TheNetherlands
Vehiculardrivelineswithhierarchicalpowertraincontrolrequiregoodcomponentcontrollertracking,enablingthemaincontrollertoreachthedesiredgoals.Thispaperfocusesonthedevelopmentofatransmissionratiocontrollerforahydraulicallyactuatedmetalpush-beltcontinuouslyvariabletransmission(CVT),usingmodelsforthemechanicalandthehydraulicpartoftheCVT.Thecontrollerconsistsofananti-windupPIDfeedbackpartwithlinearizingweightingandasetpointfeedforward.Physicalconstraintsonthesystem,especiallywithrespecttothehydraulicpressures,areaccountedforusingafeedforwardparttoeliminatetheirundesiredeffectsontheratio.Thetotalratiocontrollerguaranteesthatoneclampingpressuresetpointisminimal,avoidingbeltslip,whiletheotherisraisedabovetheminimumleveltoenableshifting.ThisapproachhaspotentialforimprovingtheefficiencyoftheCVT,comparedtonon-modelbasedratiocontrollers.Vehicleexperimentsshowthatadequatetrackingisobtainedtogetherwithgoodrobustnessagainstactuatorsaturation.Thelargestdeviationsfromtheratiosetpointarecausedbyactuatorpressuresaturation.Itisfurtherrevealedthatallfeedforwardandcompensatortermsinthecontrollerhaveabeneficialeffectonminimizingthetrackingerror.
Keywords:Continuouslyvariabletransmission;Feedforwardcompensation;Feedbacklinearization;Hydraulicactuators;Constraints
1.Introduction
Theapplicationofacontinuouslyvariabletransmission(CVT)insteadofasteppedtransmis-sionisnotnew.Alreadyinthe50sVanDoorneintroducedarubberV-beltCVTforvehiculardrivelines.Modern,electronicallycontrolledCVTsmakeitpossibleforanyvehiclespeedtooperatethecombustionengineinawiderangeofoperatingpoints,forinstanceinthefueloptimalpoint.Forthisreason,CVTsgetincreasinglyimportantinhybridvehicles,seeforexample[1–3].AccuratecontroloftheCVTtransmissionratioisessentialtoachievetheintendedfueleconomyand,moreover,ensuregooddriveability.
Theratiosetpointisgeneratedbythehierarchical(coordinated)controlleroffigure1.ThiscontrollerusestheacceleratorpedalpositionastheinputandgeneratessetpointsforthelocalcontrollersofthethrottleandoftheCVT.
*Correspondingauthor.Email:pesgens@dtinnovations.nl
§MichielPesgenswaspreviouslyaffiliatedwithTechnischeUniversiteitEindhoven.
VehicleSystemDynamics
ISSN0042-3114print/ISSN1744-5159online©2006Taylor&Francis
http://www.tandf.co.uk/journalsDOI:10.1080/00423110500244088
388M.Pesgensetal.
Figure1.Hierarchicalpowertraincontrol.
TheCVTanditshydraulicactuationsystemaredepictedinfigures2,3.ThehydraulicsystemnotonlyhastoguaranteegoodtrackingbehavioroftheCVTbutalsohastorealizeclampingforcesthat,ontheonehand,arehighenoughtopreventbeltslipbut,ontheotherhand,areaslowaspossibletomaximizethetransmissionefficiencyandtoreducewear.Inpractice,theclampingforceslevelsarekeptatlevelsthatavoidbeltslipatalltimes,whilestillmaintaininganacceptabledegreeoftransmissionefficiency.
ThemainfocusofthispaperisontheratiocontroloftheCVT,usingthehydraulicactuationsystemoffigure3.Thepresentedcontrolconceptisbasedontheworkof[3,4].Itenablestrackingoftheratiosetpoint,whileguaranteeingatleastoneofthetwopulleypressuresetpointstobeequaltoitslowerconstraint.Eventhoughthecontrollereffectivelychangesfromcontrollingoneofthetwopressurestotheother,noactualswitchingbetweendifferentcontrollerstakesplace.Amongtheapproachesseenintheliterature,someincorporateaswitchingalgorithm[3,5],whereasotherscontrolonlyoneofthetwo(usuallytheprimary)pressures[6,7].Althoughtheformerapproachcannotguaranteeoneofthetwopressurestobeequaltoitslowerconstraint,thelattercannotexplicitlypreventtheuncontrolledpressuretostayaboveitslowerconstraint.
Therestofthispaperisorganizedasfollows.First,amathematicalmodelisderivedforthemechanicalpartoftheCVTinsection2.Next,insection3,thehydraulicpartismodeled.Thephysicalconstraints,imposedbythehydraulicsystem,arediscussedinsection4.TheseconstraintsaretakenintoaccountbytheCVTratiocontroller,thatisdevelopedinsection5
Figure2.Variator.
HydraulicallyactuatedCVT389
Figure3.Variatorwithhydraulicsystem.
andisbasedontheearlierderivedmodelsforthemechanicalandthehydraulicCVTparts.Thetrackingperformanceofthiscontrollerisexperimentallyevaluatedinsection6.Finally,section7givessomeconcludingremarks.
2.ThepushbeltCVT
TheCVT(figure2)consideredhereisequippedwithaVanDoornemetalpushbelt.Thisbeltconsistsofalargenumber(around350)ofV-shapedsteelblockelements,heldtogetherbyanumber(between9and12)ofthinsteeltensionrings.Thebeltrunsontwopulleys,namelytheprimarypulleyattheenginesideandthesecondarypulleyatthewheelside.Eachpulleyconsistsofoneaxiallyfixedandonemoveablesheave,operatedbymeansofahydrauliccylinder.Thecylinderscanbepressurized,generatingaxialforces(clampingforcesorthrusts)onthebelt,necessaryfortransmissionoftorque(withoutmacro-slipofthebelt)andforratiochange.Herethedistinctionismadebetweenmicro-slip,neededfortorquetransferbetweenbeltandpulleys,andmacro-slip,whichshouldbeavoidedatalltimesforitsnegativeeffectonefficiencyandespeciallytheriskofseverebeltandpulleywear[8].
Theboundedtransmissionratiorcvt∈[rcvt,LOW,rcvt,OD]isdefinedhereastheratioofsecondarypulleyspeedωsoverprimarypulleyspeedωp,so:
rcvt=
ωsωp
(1)
Inderivingthevariatormodel,ithasbeenassumedthatthepulleysarerigidandperfectlyaligned,andthattheV-shapedblocksarerigidandthesteelringsareinextensible.Thebeltisassumedtoruninperfectcirclesonthepulleys.Further,ithasbeenassumedthattheclampingforcesarelargeenoughtopreventmacrobeltslip.Theeffectsofmicro-sliparerelativelysmallwithrespecttotheratiochangebehavioroftheCVT,andare,therefore,neglectedinthemodel.ThepowertransmissionbetweenthebeltandthepulleysismodeledasCoulombfriction(whichisassumedinthemajorityofCVTvariatorresearch[3]).
390M.Pesgensetal.
Usingtheseassumptions,therunningradiiRpandRsofthebeltontheprimaryandsecondarypulleysarefunctionsoftheratiorcvtonlyandarerelatedby:
Rp=rcvt·Rs
(2)
Theaxialpositionsα(α=pfortheprimarypulley,α=sforthesecondaryone)ofthemoveablepulleysheaveofpulleyαisalsocompletelydeterminedbytheratiorcvt.Denotingthetaperangleoftheconicalsheavesbyϕ(seefigure4),itiseasilyseenthatsαisgivenby:
sα=2·tan(ϕ)·(Rα−Rα,min)
(3)
Subscript‘max’(or‘min’)impliesthemaximum(orminimum)valuepossible,e.g.Xmax=max(X),unlessstatedotherwise.Differentiationwithrespecttotimeyieldstheaxialvelocitys˙αofthemoveablesheaveofpulleyα
s˙α=να(rcvt)·r˙cvt
(4)
wherethefunctionναfollowsfromthegeometryofthevariator.
Assumingthattheradialfrictionforcecomponentbetweenthepulleyandthebeltiszero,thecriticalpulleyclampingforce(equalforbothpulleys,neglectingthevariator’sefficiency)isgivenbyreferences[3,5](forpulleyα):
Fcrit=
cos(ϕ)·|Tα|2·µ·Rα
(5)
whereTαisthenettransmittedtorquebetweenbeltandpulleyandµisthecoulombfrictioncoefficientbetweenpulleysandbelt.Thefactor2appears,astherearetwofrictionsurfacesbetweenpulleyandbelt.
RadialforcesbetweenbeltandpulleyscanbemainlycontributedtocentrifugalforcesandCoriolisforces.Inthedetailedthrustforcemodelofref.[9],itisreportedthateveniftheslidingangle(andhencethefrictionforceangle)ξbetweenthebeltpathandthefrictionforcevectorchangesalongthepulleycircumference,itsvalueconvergesrapidlytowardsvalueslessthan10◦.Asaresult,theangleisassumedzero.Thefrictionforceangleξwouldenterintoequation(5)asamultiplicationfactorcos(ξ),whichrapidlyconvergesto1forsmallangles.Forthechoiceofµ,aworst-caseapproachisapplied.Itischosenasthemaximumofthetractioncurve(ofwhichseveralhavebeenpresentedinref.[10]),whichisthepointoftransitionfrommicro-sliptomacro-slip.Thelowestvalueofallthemaximafoundinref.[10],aswellasinref.[8](forbothverysimilarvariators)is0.09,thevalueofµthathasbeenusedhere.
Figure4.Pulleysheavedefinitions.
HydraulicallyactuatedCVT391
Thetorqueratioταistheratiooftransmittedtorqueandmaximallytransmittabletorquewithoutbeltslipforpulleyα:
τα=
TαTα,max
=
cos(ϕ)·Tα2·µ·Rα·Fα
(6)
Asinapracticalvehicleapplicationagoodestimateofthetorquesactingonthesecondarypulleyisnotavailable,thefollowingmodifiedtorqueratioisintroduced:
τs
ˆpcos(ϕ)·T
=
2·µ·Rp·Fs
(7)
ˆpcanbeobtainedfromthedynamicdrivelineTheestimatedprimarytransmittedtorqueT
equationstogetherwithengineandtorqueconvertercharacteristics(alsoseesection4).In
ˆp=Tp,itiseasilyseenthat(usingequation(6)):caseofaperfecttorqueestimation,i.e.T
τs=
Pp
·τsPs
(8)
withtransmittedpowerPα=Tα·ωα.AsithasbeenassumedthatPp=Ps,themodifiedtorqueratiobecomesequaltothetorqueratioforthesecondarypulley.
AnimportantpartofthemodelforthemechanicalpartoftheCVTisthesub-modelfortherateofratiochangeasafunctionof,forinstance,theclampingforces.Sub-modelsofthistypeareproposed,amongothers,byGuebelietal.[11],Ideetal.[12,13]andShafaietal.[14].TheblackboxmodelofIdeispreferredhere,asitreasonablydescribestheresultsofaseriesofexperimentswithmetalV-beltCVTs[3,4].
ThesteadystateversionofIde’smodelyieldsarelationfortheprimaryclampingforceFpthatisrequiredtomaintainagivenratiorcvtwithagivensecondaryclampingforceFsandagivenprimarytorqueTp(throughthemodifiedtorqueratioτs):
Fp=κ(rcvt,τs)·Fs
(9)
Forobviousreasons,thequantityκinequation(9)iscalledthethrustratio.Someexperimen-tallyobtainedresultsforthishighlynon-linearfunctionoftheCVTratiorcvtandthetorqueratioτsaregiveninfigure5.
Forinstationarysituations,Ide’smodelstatesthattherateofratiochanger˙cvtisafunctionoftheratiorcvt,primarypulleyspeedωp,clampingforcesFpandFsandtorqueratioτs:
r˙cvt=kr(rcvt)·|ωp|·Fshift;
Fshift=Fp−κ(rcvt,τs)·Fs
(10)
AnaxialforcedifferenceFshift,weightedbythethrustratioκresultsinaratiochange,andis
thereforecalledtheshiftforce.Theoccurrenceofωpinthemodel(10)isplausiblebecauseanincreasingshiftforceisneededfordecreasingpulleyspeedstoobtainthesamerateofratiochange.ThereasonisthatlessV-shapedblocksenterthepulleyspersecondwhenthepulleyspeeddecreases.Asaresulttheradialbelttravelperrevolutionofthepulleysmustincreaseandthisrequiresahighershiftforce.However,itisfarfromobviousthattherateofratiochangeisproportionaltoboththeshiftforceandtheprimarypulleyspeed.krisanon-linearfunctionoftheratiorcvtandhasbeenobtainedexperimentally.Experimentaldatahasbeenusedtoobtainapiecewiselinearfit,whicharedepictedinfigure6.Theestimationofkrhas
392M.Pesgensetal.
Figure5.
Contourplotofκ(rcvt,τs).
Figure6.Fitofkr(rcvt);greyed-outdotscorrespondtodatawithreducedaccuracy.
HydraulicallyactuatedCVT393
Figure7.Comparisonofshiftingspeed,Ide’smodelvs.measurement.
beenobtainedusingtheinverseIdemodel:
kr(rcvt)=
r˙cvt
|ωp|·Fshift
(11)
InthedenominatorFshiftispresent,thevalueofwhichcanbecome(closeto)zero.Obviously,theestimateisverysensitiveforerrorsinFshiftwhenitsvalueissmall.Thedominantdis-turbancesinFshiftarecausedbyhigh-frequencypumpgeneratedpressureoscillations,whichdonotaffecttheratio(duetothelow-passfrequencybehaviorofunmodeledvariatorpulleyinertias).Thestandarddeviationofthepressureoscillationsandotherhigh-frequencydistur-banceshasbeendeterminedapplyingahigh-passButterworthfiltertothedataofFshift.Toavoidhigh-frequencydisturbancesinFshiftblurringtheestimateofkr,estimatesforvaluesofFshiftsmallerthanatleastthreetimesthedisturbance’sstandarddeviationhavebeenignored(thesehavebeenplottedasgreydotsinfigure6),whereastheotherpointshavebeenplottedasblackdots.Thewhitelineistheresultingfitofthisdata.Thefewpointswithnegativevalueforkrhavebeenidentifiedaslocalerrorsinthemapofκ.TovalidatethequalityofIde’smodel,theshiftingspeedr˙cvt,recordedduringaroadexper-iment,iscomparedwiththesamesignalpredictedusingthemodel.Modelinputsarethehydraulicpulleypressures(pp,ps)andpulleyspeeds(ωp,ωs)togetherwiththeestimated
ˆp).Theresultisdepictedinfigure7.Themodeldescribestheshiftingprimarypulleytorque(T
speedwell,butforsomeupshiftsitpredictstoolargevalues.ThishappensonlyforhighCVTratios,i.e.rcvt>1.2,wherethedataofκisunreliableduetoextrapolation(seefigure5).
3.Thehydraulicsystem
ThehydraulicpartoftheCVT(seefigure3)consistsofarollervanepumpdirectlyconnectedtotheengineshaft,twosolenoidvalvesandapressurecylinderoneachofthemovingpulley
394M.Pesgensetal.
sheaves.Thevolumebetweenthepumpandthetwovalvesincludingthesecondarypulleycylinderisreferredtoasthesecondarycircuit,thevolumedirectlyconnectedtoandincludingtheprimarypulleycylinderistheprimarycircuit.Excessiveflowinthesecondarycircuitbleedsofftowardtheaccessories,whereastheprimarycircuitcanblowofftowardthedrain.Allpressuresaregagepressures,definedrelativetotheatmosphericpressure.Thedrainisatatmosphericpressure.
TheclampingforcesFpandFsarerealizedmainlybythehydrauliccylindersonthemove-ablesheavesanddependonthepressuresppandps.Asthecylindersareanintegralpartofthepulleys,theyrotatewithanoftenveryhighspeed,socentrifugaleffectshavetobetakenintoaccountandthepressureinthecylinderswillnotbehomogeneous.Therefore,theclampingforceswillalsodependonthepulleyspeedsωpandωs.Furthermore,apreloadedlinearelasticspringwithstiffnessksprisattachedtothemoveablesecondarysheave.Thisspringhastoguaranteeaminimalclampingforcewhenthehydraulicsystemfails.Togetherthisresultsinthefollowingrelationsfortheclampingforces:
2
Fp=Ap·pp+cp·ωp
2
Fs=As·ps+cs·ωs−kspr·ss+F0
(12)(13)
wherecpandcsareconstants,whereasF0isthespringforcewhenthesecondarymoveable
sheaveisatpositionss=0.Furthermore,ApandAsarethepressurizedpistonsurfaces.Inthehydraulicsystemoffigure3,theprimarypressureissmallerthanthesecondarypressureifthereisanoilflowfromthesecondarytotheprimarycircuit.Therefore,toguaranteethatinanycasetheprimaryclampingforcecanbeuptotwiceaslargeasthesecondaryclampingforce,theprimarypistonsurfaceApisapproximatelytwiceaslargeasthesecondarysurfaceAs.Itisassumedthattheprimaryandthesecondarycircuitarealwaysfilledwithoilofconstanttemperatureandaconstantairfractionof1%.Thevolumeofcircuitα(α=p,s)isgivenby:
Vα=Vα,min+Aα·sα
(14)
Vα,ministhevolumeifsα=0andAαisthepressurizedpistonsurface.
Thelawofmassconservation,appliedtotheprimarycircuit,combinedwithequation(14),resultsin:
κoil·Vp·p˙p=Qsp−Qpd−Qp,leak−Qp,V(15)Qspistheoilflowfromthesecondarytotheprimarycircuit,Qpdistheoilflowfromthe
primarycircuittothedrain,Qp,leakisthe(relativelysmall)oilflowleakingthroughnarrowgapsfromtheprimarycircuitandQp,Vistheoilflowduetoachangeintheprimarypulleycylindervolume.Furthermore,κoilisthecompressibilityofoil.TheoilflowQspisgivenby:
2
Qsp=cf·Asp(xp)··|ps−pp|·sign(ps−pp)(16)
ρwherecfisaconstantflowcoefficientandρistheoildensity.Asp,theequivalentvalveopeningareaforthisflowpath,dependsontheprimaryvalvestempositionxp.FlowQpdfollowsfrom:
2
Qpd=cf·Apd(xp)·(17)·pp
ρHere,Apdistheequivalentopeningareaoftheprimaryvalvefortheflowfromprimarycircuittothedrain.TheconstructionofthevalveimpliesthatAsp(xp)·Apd(xp)=0forallpossiblexp.
HydraulicallyactuatedCVT395
FlowQp,leakisassumedtobelaminarwithleakflowcoefficientcpl,so:
Qp,leak=cpl·pp
Theflowduetoachangeoftheprimarypulleycylindervolumeisdescribedby:
˙pQp,V=Ap·s
withs˙pgivenbyequation(4).
Applicationofthelawofmassconservationtothesecondarycircuityields
κoil·Vs·ps=Qpump−Qsp−Qsa−Qs,leak−Qs,V
(20)(19)(18)
TheflowQpump,generatedbytherollervanepump,dependsontheangularspeedωeoftheengineshaft,onthepumpmodem(m=SSforsinglesidedandm=DSfordoublesidedmode),andthepressurepsatthepumpoutlet,soQpump=Qpump(ωe,ps,m).QsaistheflowfromthesecondarycircuittotheaccessoriesandQs,leakistheleakagefromthesecondarycircuit.FlowQsaismodeledas:
2
(21)·|ps−pa|·sign(ps−pa)Qsa=cf·Asa(xs)·
ρwhereAsa,theequivalentvalveopeningofthesecondaryvalve,dependsonthevalvestempositionxs.ThelaminarleakageflowQs,leakisgivenby(withflowcoefficientcsl):
Qs,leak=csl·ps
Theflowduetoachangeofthesecondarypulleycylindervolumeis:
˙sQs,V=As·s
(23)(22)
withs˙saccordingtoequation(3).
Theaccessorycircuitcontainsseveralpassivevalves.Inpractice,thesecondarypressurepswillalwaysbelargerthantheaccessorypressurepa,i.e.nobackflowoccurs.Therelationbetweenpaandpsisapproximatelylinear,so
pa=ca0+ca1·ps
(24)
withconstantsca0>0andca1∈(0,1).
NowthatacompletemodelofthepushbeltCVTanditshydraulicsisavailable,thecontrolleranditsoperationalconstraintscanbederived.
4.Theconstraints
TheCVTratiocontroller(infact)controlstheprimaryandsecondarypressures.Severalpressureconstraintshavetobetakenintoaccountbythiscontroller:
1.thetorqueconstraintspα≥pα,torquetopreventsliponthepulleys;
2.thelowerpressureconstraintspα≥pα,lowtokeepbothcircuitsfilledwithoil.Here,fairlyarbitrary,pp,low=3[bar]ischosen.ToenableasufficientoilflowQsatotheaccessorycircuit,andforaproperoperationofthepassivevalvesinthiscircuititisnecessarythat
396M.Pesgensetal.
QsaisgreaterthanaminimumflowQsa,min.Aminimumpressureps,lowof4[bar]turnsouttobesufficient;
3.theupperpressureconstraintspα≤pα,max,topreventdamagetothehydrauliclines,cylindersandpistons.Hence,pp,max=25[bar],ps,max=50[bar];
4.thehydraulicconstraintspα≥pα,hydtoguaranteethattheprimarycircuitcanbleedofffastenoughtowardthedrainandthatthesecondarycircuitcansupplysufficientflowtowardtheprimarycircuit.Thepressurespp,torqueandps,torqueinconstraint1dependonthecriticalclampingforce
ˆpiscalculatedusingthestationaryenginetorqueFcrit,equation(5).TheestimatedtorqueT
map,torqueconvertercharacteristicsandlock-upclutchmode,togetherwithinertiaeffectsoftheengine,flywheelandprimarygearboxshaft.Asafetyfactorks=0.3withrespecttothe
ˆp,maxhasbeenintroducedtoaccountfordisturbancesonestimatedmaximalprimarytorqueT
ˆp,suchasshockloadsatthewheels.ThenthepulleyclampingforcetheestimatedtorqueT
(equalforbothpulleys,neglectingthevariatorefficiency)neededfortorquetransmissionbecomes:
Ftorque=
ˆp|+ks·Tˆp,max)cos(ϕ)·(|T
2·µ·Rp
(25)
Consequently,theresultingpressurescanbeeasilyderivedusingequations(12)and(13):
pp,torqueps,torque
12
=Ftorque−cp·ωp
Ap
12
Ftorque−cs·ωs=−kspr·ss−F0As
(26)(27)
Exactlythesameclampingstrategyhasbeenpreviouslyusedbyref.[3]duringteststandefficiencymeasurementsofthisgearboxandtestvehicleroadtests.Nosliphasbeenreportedduringanyofthoseexperiments.Asthemaingoalofthisworkistoanimprovedratiotrackingbehavior,theclampingstrategyhasremainedunchanged.
Afurtherelaborationofconstraints4isbasedonthelawofmassconservationfortheprimarycircuit.Firstofall,itisnotedthatforthiselaborationtheleakageflowQp,leakandthecompressibilitytermκoil·Vp·p˙pmaybeneglectedbecausetheyaresmallcomparedtotheotherterms.Furthermore,itismentionedagainthattheflowsQspandQpdcanneverbeunequaltozeroatthesametime.Finally,itischosentoreplacetherateofratiochanger˙cvtbythedesiredrateofratioshiftr˙cvt,d,thatisspecifiedbythehierarchicaldrivelinecontroller.Ifr˙cvt,d<0,thenoilhastoflowoutoftheprimarycylindertothedrain,soQpd>0andQsp=0.Constraint4withrespecttotheprimarypulleycircuitthenresultsinthefollowingrelationforthepressurepp,hyd:
pp,hyd
ρoil=·
2
rcvt,d)Ap·νp·max(0,−˙
cf·Apd,max
2
(28)
whereApd,maxisthemaximumopeningoftheprimaryvalveintheflowpathfromtheprimarycylindertothedrain.
Inasimilarway,arelationforthesecondarypulleycircuitpressureps,hydinconstraint4canbederived.Thisconstraintisespeciallyrelevantifr˙cvt>0,i.e.iftheflowQspfromthesecondarytotheprimarycircuithastobepositiveand,asaconsequence,Qpd=0.Thisthen
HydraulicallyactuatedCVT397
resultsin:
ps,hyd
ρoil
=pp,d+·
2
˙cvt,d)Ap·νp·max(0,r
cf·Asp,max
2
(29)
whereAsp,maxisthemaximumopeningoftheprimaryvalveintheflowpathfromthesecondarytotheprimarycircuit.
ForthedesignoftheCVTratiocontrolleritisadvantageoustoreformulatetoconstraintsintermsofclampingforcesinsteadofpressures.AssociatingaclampingforceFα,βwiththepressurepα,βandusingequations(12)and(13)thisresultsintherequirement:
Fα,min≤Fα≤Fα,max
withminimumpulleyclampingforces:
Fα,min=max(Fα,low,Fα,torque,Fα,hyd)
(31)(30)
5.Controldesign
Itisassumedinthissectionthatateachpointoftimet,theprimaryspeedωp(t),theratiorcvt(t),theprimarypressurepp(t)andthesecondarypressureps(t)areknownfrommeasurements,filteringand/orreconstruction.Furthermore,itisassumedthattheCVTismountedinavehiculardrivelineandthatthedesiredCVTratiorcvt,d(t)andthedesiredrateofratiochanger˙cvt,d(t)arespecifiedbytheoverallhierarchicaldrivelinecontroller.Thisimplies,forinstance,thatateachpointoftimetheconstraintforcescanbedetermined.
ThemaingoalofthelocalCVTcontrolleristoachievefastandaccuratetrackingofthedesiredratiotrajectory.Furthermore,thecontrollershouldalsoberobustfordisturbances.Animportantsubgoalistomaximizetheefficiency.Itisquiteplausible(andotherwisesupportedbyexperiments,[3])thattorealizethissub-goaltheclampingforcesFpandFshavetobeassmallaspossible,takingtherequirementsinequation(30)intoaccount.
Theoutputoftheratiocontrollerissubjecttotheconstraintsofequation(31).TheconstraintsFα≥Fα,mincaneffectivelyraisetheclampingforcesetpointofonepulley,resultinginanundesirableratiochange.Thiscanbecounteractedbyraisingtheoppositepulley’sclampingforceaswell,usingmodel-basedcompensatortermsintheratiocontroller.UsingIde’smodel,i.e.usingequation(10),expressionsfortheratiochangeforcesFp,ratioandFs,ratio(figure8)canbeeasilyderived:
Fp,ratio=Fshift,d+κ·Fs,minFs,ratio=
−Fshift,d+Fp,min
κ
(32)(33)
whereFshift,disthedesiredshiftingforce,basicallyaweightedforcedifferencebetweenbothpulleys.Asexplainedearlier,κdependsonτs,whichinturndependsonFs.Thisisanimplicitrelation(Fs,ratiodependsonFs),whichhasbeentackledbycalculatingκfrompressuremeasurements.
Itwillnowbeshownthatateachtime,oneofthetwoclampingforcesisequaltoFα,min,whereastheotherdeterminestheratio.Usingequations(30),(32)and(33)thedesiredprimary
398M.Pesgensetal.
Figure8.Ratiocontrollerwithconstraintscompensation
andsecondaryclampingforcesFp,dandFs,daregivenby:
Fp,d=Fp,ratio
ifFshift,d+κ·Fs,min>Fp,min
Fs,d=Fs,min
Fp,d=Fp,min
ifFshift,d+κ·Fs,min (34) (35) Infact,theratioiscontrolledinsuchawaythattheshiftingforceFshiftbecomesequaltoFshift,d.FortheresultingshiftingforceholdsFshift=Fp,d−κ·Fs,d,so: Fp,ratio−κ·Fs,min=Fshift,difFshift,d+κ·Fs,min>Fp,min Fshift=(36) Fp,min−κ·Fs,ratio=Fshift,difFshift,d+κ·Fs,min Fshift,d= u+r˙cvt,dkr·|ωp|(37) Basicallyafeedback-linearizingweightingofuwiththereciprocalofboth|ωp|andkrisapplied.Thiscancelsthe(known)non-linearitiesinthevariator,see,e.g.Slotineetal.[15].Further,asetpointfeedforwardisintroduced,whichwillreducethephaselagofthecontrolledsystemresponses. Owingtomodelinaccuraciesorduetoexternaldisturbancesunaccountedfor(liketheupperclampingforceconstraints),differencesγbetweenr˙cvtandr˙cvt,dwilloccur: r˙cvt=r˙cvt,d+u+γ (38) Goodtrackingbehaviorisobtainedifucancelsγwell.Alinearfeedbackcontrollerhasbeenchosenforubasedontheknowledgethat(contrarytoequation(10)),thereareinertiasinvolved,requiringatleastasecondordercontroller.Consequently,aPIDcontrollerisused. HydraulicallyactuatedCVT399 Theproportionalactionisnecessaryforarapidreductionoferrors,whereastheintegratingactionisneededinordertotrackrampratiosetpointswithzeroerror.Somederivativeactionprovednecessarytogainlargerstabilitymargins(andlessoscillatoryresponses).Thecontrollerisimplementedasfollows: t u=P·(rcvt,d−rcvt)+I·˙cvt(39)ke·(rcvt,d−rcvt)dτ+D·r 0 whereke∈{0,1}switchestheintegratoronandoffdependingoncertainconditionsthatare explainedfurtheron.ThederivativeactionofthecontrolleronlyactsonthemeasuredCVTratiosignaltoavoidanexcessivecontrollerresponseonstepwisechangesoftheratiosetpoint.Additionally,ahigh-frequencypolehasbeenaddedtothederivativeoperationtopreventexcessivegainsathighfrequencies.ThecontrollerparametersP,IandDhavebeentunedmanually. Duringinstancesofactuatorsaturation(becauseofthemaximumforceconstraints),theclosedloopiseffectivelybroken(measurementrcvtdoesnotreacttochangesinuanymore).Thiswillleadtodegradedperformance,asthevalueofthecontroller’sintegratorcontinuestogrow.Thisso-calledintegratorwindupisundesirable.Aconditionalanti-windupmechanismhasbeenaddedtolimittheintegrator’svalueduringsaturation: 1ifFp,ratio≤Fp,max∧Fs,ratio≤Fs,max ke=(40) 0ifFp,ratio>Fp,max∨Fs,ratio>Fs,maxIfeitherpressuresaturates(pp=pp,maxorps=ps,max),theshiftingspeederrorγinevitablybecomeslarge.Theanti-windupalgorithmensuresstability,butthetrackingbehaviorwilldeteriorate.Thisisahardwarelimitationwhichcanonlybetackledbyenhancingthevariatorandhydraulicshardware.Theadvantageofaconditionalanti-windupvs.astandard(linear)algorithmisthatthelinearapproachrequirestuningforgoodperformance,whereasthecon-ditionalapproachdoesnot.Furthermore,theperformanceoftheconditionalalgorithmcloselyresemblesthatofawell-tunedlinearmechanism. 6.Experimentalresults AstheCVTisalreadyimplementedinatestvehicle,in-vehicleexperimentsonarollerbenchhavebeenperformedtotuneandvalidatethenewratiocontroller.Topreventanon-synchronizedoperationofthrottleandCVTratio,theacceleratorpedalsignal(seefigure1)hasbeenusedastheinputforthevalidationexperiments.Thecoordinatedcontrollerwilltrackthemaximumengineefficiencyoperatingpoints.Asemikick-downactionatacruise-controlledspeedof∼50km/hfollowedbyapedalbackouthasbeenperformedinasinglereferenceexper-iment.Therecordedpedalangle(seefigure9)hasbeenappliedtothecoordinatedcontroller.Thisapproachcancelsthelimitedhumandriver’srepeatability. Theupperplotoffigure10showstheCVTratioresponsecalculatedfromspeedmeasure-mentsusingequation(1),theplotdepictsthetrackingerror.Asthisisaquitedemandingexperiment,thetrackingisstilladequate.Muchbettertrackingperformancecanbeobtainedwithmoresmoothsetpoints,butthecharacteristicsoftheresponseswillbecomelessdistinctaswell.Figure11showstheprimaryandsecondarypulleypressures.Theinitialmainpeakintheerrorsignal(aroundt=1.5s)iscausedbysaturationofthesecondarypressure(lowerplotoffigure11),duetoapumpflowlimitation.Ifafasterinitialresponsewererequired,adaptationofthehydraulicshardwarewouldbenecessary.Aftertheinitialfastdownshift,theratioreachesitssetpoint(aroundt=7s)beforedownshiftingagain.Allchangesinshifting 400M.Pesgensetal. Figure9.PedalinputfortheCVTpowertrain. direction(t=1.3,t=1.6andt=7.5s)occurwitharelativelysmallamountofovershoot,whichshowsthattheintegratoranti-windupalgorithmperformswell. Lookingattheprimarypressureinthevicinityoft=1.5s,itcanbeobservedthatthispressurepeaksrepeatedlyaboveitssetpoint.Thisbehavioriscausedbyperformancelimi-tationsoftheprimarypressurecontroller.Thedevelopedcontrollerguaranteesthatonlyonepulleypressuresetpointatthetimeisraisedaboveitslowerconstraint,andonlytorealize Figure10.CVTratioresponseandtrackingerror,rollerbenchsemi-kickdown. HydraulicallyactuatedCVT401 Figure11.Primaryandsecondarypulleypressures,rollerbenchsemi-kickdown. adesiredratio.Thisisvisualizedinfigure12.HigherclampingforcescausemorelossesintheCVT[10],aslongasnomacro-slipoccurs.Themaincausesareoilpumppowerdemand(approximatelylinearwithpressure)andlossesinthebeltitself,whichbothincreasewithincreasingclampingpressure,assupportedbymeasurements[16].Hence,thiscontrollerhasapotentialforimprovingtheefficiencyofaCVT,comparedtonon-modelbasedcontrollers. Figure12.Newcontroller’spulleypressuresetpointsminuslowerconstraints. 402M.Pesgensetal. Lookingbacktothelowerplotoffigure10,thesecond(positive)peak(afterthefirstnegativepeakduetoactuatorsaturation)representstheovershootoftheratioresponseduetoashiftingdirectionchange.Thisquantitydescribesthetrackingperformanceofacontrollerwell,andwillbeusedtoevaluateacontroller’sperformance.Theovershootiscomputedhereasthe(positive)maximumoftheratioerror:max(rcvt,d−rcvt).Also,themeanabsoluteerrorN (1/N)0|rcvt,d−rcvt|(fortheNdatapointsinthe10sresponse)willbeusedtocompareresults. Thesameexperimenthasbeenperformedforseveralvariationsonthecontroller.Foreachofthesevariations,allconstraintsarestillimposed,butsomeofthecompensatortermsintheratiocontrollerhavebeentemporarilyswitchedoff(theverticalarrowsinfigure8).Theresultshavebeencomparedwiththeresultsforthetotalcontrollerandaredepictedinfigure13.Thecasesthatwillbeaddressedare:1.2.3.4.5. Allfeedforwardsandcompensatorson(‘total’).Nosetpointfeedforward(‘setpffoff’),r˙cvt,d=0inequation(37). Nocritical(nobeltslip)torqueconstraintcompensation(‘Tcompoff’),Ftorque=0.Nohydraulicconstraintscompensation(‘hydrcompoff’),Fα,hyd=0. Notorquetransmissionnorhydraulicconstraintscompensation(‘T,hydrcompoff’),Ftorque=0,Fα,hyd=0. Itisimmediatelyclearthatofallalternatives,thetotalcontrollerwithallfeedforwardsandcompensatorson(‘total’)describedinthepreviousparagraphperformsbest,implyingthatallcontrollertermshaveapositivecontributiontowardsminimizingthetrackingerror.Switchingoffeitherthehydraulicconstraintscompensationterms(‘hydrcompoff’)orthetorquetrans-missioncompensator(‘Tcompoff’)doesnotseverelydegradethetrackingquality.However,switchingbothcompensatorsoff(‘T,hydrcompoff’)doesintroducelargetrackingerrors.Thisoccursbecausethemaximumoperatorofbothconstraintsistakentocalculatethecompen-satingaction,andifoneconstraintcompensatoriszero,theoutputofthemaximumoperator Figure13.Overshootandmeanabsoluteerrorforseveralcontrolleralternatives. HydraulicallyactuatedCVT403 willstillbenon-zeroduetothesecondconstraint.Bothcompensatorsswitchedoffsimulta-neouslyeffectivelyintroducea‘deadzone’inthecontrolleroutputu,theresultofwhichisobvious.Theresponsewiththesetpointfeedforwardswitchedoff(‘setpffoff’)increasestheerrorsduetoincreasedphaselagoftheresultingresponse.Theobtainedresultsofthetotaldevelopedcontrollershowbettertrackingbehavior(overshootandmeanabsoluteerror)andlowertransientpulleypressures(onlyduringratiochange,astheclampingstrategyisequal)comparedwithresultsobtainedwithapreviouslyadoptedcontroller,asdescribedinref.[3].ThiscouldbeanindicationforthepotentialforimprovingtheCVTefficiencyofthenewcontroller,asdescribedbefore. Vehicletestsincludingtipshifting(featuringstepwiseratiosetpointchanges)havebeenper-formedonatesttrack,seefigure14.Thestepwisechangesintheratiosetpointaretrajectoriesthatcannotberealized.Hence,themeasuredCVTratiowillalwayslagbehind.Hence,thisexperimentdemonstratestherobustnessagainstactuatorsaturation,asthepressureofthepul-leythatcontrolstheratiowillsaturate.Astheerrorsinthefeedforwardtermsofthecontrollerwillincrease,thefeedbackcontrollerbecomesincreasinglyimportant.Alsotheanti-windupmechanismoftheratiocontrollerneedstopreventovershoot.Resultsofanexperimentdrivingatacruise-controlledspeedof50km/haredepictedinfigures15and16.Anewgearratiosetpointisgeneratedevery2s. Atthestartoftheup-shiftratioresponsesatt=2.1sandt=4.2s,aninverseresponseispresent.Astheshiftingspeedsareindeedveryhighinthisexperiment,becauseofthelayoutofthehydraulicsystem,thesecondarycircuitneedstosupplytheprimarycircuitwithoil.Asaresult,thesecondarypressurerisesinadvancetotheprimarypressureandcausesaninitialdownshift.Aroundt=3sandt=5s,theratioinitiallyrisesapproximatelylinear,causedbythelimitedpumpflowastheoilpumprunsatenginespeed,whichislow.Upshiftingisfurthercharacterizedbysomeovershoot,whichisclearlyvisibleatt=14s.Astheprimarypressurecannotdropsufficientlyquickduetoalimitedprimaryvalveflow-throughareatowardthedrain,upshiftingcontinuesandcausesovershoot.Thesecondarypressureonlysaturatesbrieflyduetothelimitedpumpflowaftereachratiosetpointchange.Muchlessovershootispresentduringadownshift,thespeedofwhichisnotlimitedbypumpflow.Againtheprimarypressurepeaksaboveitssetpointwhenthesecondarypressureisincreasedrapidly,caused Figure14.Experimentalvehicleduringtip-shiftsatthetesttrack. 404M.Pesgensetal. Figure15.CVTratioresponseandtrackingerror,roadtipshifting. bylimitationsintheprimarypressurecontroller.Thisphenomenonlowersthemaximumdownshiftspeedandisvisibleasaslight‘bump’intheratioatt=6.2sandt=8.2s. Asthemaingoalofthepresentedexperimentsistodemonstrateanewratiocontrollerconcept,duringtheexperimentsbeltsliphasbeenavoidedusingaprovenclampingstrategyasmentionedearlier.Also,anonlinemodel-baseddetectionalgorithmwasused,verifyingthat|τs|≤1.Twomethodstodetectbeltslipoff-linefrommeasurementdata(withoutdirect Figure16.Primaryandsecondarypulleypressures,roadtipshifting. HydraulicallyactuatedCVT405 measurementsofthebelt’srunningradiusonthepulleystocalculatetheso-calledgeometricratio)havebeenusedaftertheexperiments.First,ithasbeenverifiediftherangeofCVTratiosgeometricallypossibleisnotexceeded(rLOW≤rcvt≤rOD).Secondly,themaximumshiftingspeedoftheCVTislimitedduetolimitedclampingforcesandvariatorspeed,seeequation(10).Thecoefficientoffrictionintheexcessive(macro-)slipregionofapush-beltdecreaseswithslipspeed[8].Thiscausesunstabledynamicbehavior,andhenceslipspeedwillincreaserapidlywhenthetorquecapacityofaV-beltisexceeded.Astheratioiscalculatedfrommeasuredpulleyspeeds,excessivelyfastratiochanges(highvaluesofr˙cvt)canindicatebeltslip.Theresultsofeachmeasurementhavebeenscrutinized,theresultofwhichdidnotshowanytracesofbeltslipeffects. 7.Conclusions Anewratiocontrollerforametalpush-beltCVTwithahydraulicbeltclampingsystemhasbeendeveloped.Onthebasisofdynamicmodelsofthevariatorandhydraulics,compensatortermsofsystemconstraints,asetpointfeedforwardandalinearizingfeedbackcontrollerhavebeenimplemented.ThefeedbackcontrollerisaPIDcontrollerwithconditionalanti-windupprotection.Thetotalratiocontrollerguaranteesthat,atleastoneofthepressuresetpointsisalwaysminimalwithrespecttoitsconstraints,whiletheotherisraisedabovethemini-mumleveltoenableshifting.ThisapproachhaspotentialforaCVTefficiencyinprovement.Rollerbenchandroadexperimentswithavehiclebuilt-inCVTshowthatadequatetrackingisobtained.Thelargestdeviationsfromtheratiosetpointarecausedbyactuatorpressuresatura-tion.Experimentswithseveralcontrollervariationsfeaturingfeedforwardsbeingswitchedoffrevealthatallimplementedfeedforwardandconstraintcompensatortermshaveabeneficialeffectonminimizingthetrackingerror.Tipshiftexperimentsrevealedgoodrobustnessagainstactuatorsaturation.References [1]Frank,A.A.andFrancisco,A.,2002,IdealoperatinglineCVTshiftingstrategyforhybridelectricvehi-cles.ProceedingsoftheInternationalCongressonContinuouslyVariablePowerTransmission(CVT’02),VDIBerichte1709,pp.211–227. [2]Ozeki,T.andUmeyama,M.,2002,DevelopmentofToyota’stransaxleformini-vanhybridvehicles. TransmissionandDrivelineSystemsSymposium2002,SP-1655,no.2002-01-0931. [3]Vroemen,B.G.,2001,Componentcontrolforthezeroinertiapowertrain.PhDthesis,TechnischeUniversiteit Eindhoven,TheNetherlands. [4]Stouten,B.,2000,ModelingandcontrolofaCVT.WFW-Report2000.10,TechnischeUniversiteitEindhoven, TheNetherlands. [5]Spijker,E.,1994,SteeringandcontrolofaCVTbasedhybridtransmissionforapassengercar.PhDthesis, TechnischeUniversiteitEindhoven,TheNetherlands. [6]vanderLaan,M.andLuh,J.,1999,Model-basedvariatorcontrolappliedtoabelttypeCVT.Proceedingsofthe InternationalCongressonContinuouslyVariablePowerTransmission(CVT’99),Eindhoven,TheNetherlands,pp.105–110. [7]Vanvuchelen,P.,1997,Virtualengineeringfordesignandcontrolofcontinuouslyvariabletransmissions.PhD, thesis,KatholiekeUniversiteitLeuven,Belgium. [8]vanDrogen,M.andvanderLaan,M.,2003,Determinationofvariatorrobustnessundermacroslipconditions forapushbeltCVT.SAEpaper2003-01-0480. [9]Lee,H.andKim,H.,2000,AnalysisofprimaryandsecondarythrustsforametalbeltCVT;Part1:Newrelation consideringbandtensionandblockcompression.SAEpaper2000-01-0841. [10]Bonsen,B.,Klaassen,T.W.G.L.,vandeMeerakker,K.G.O.,Steinbuch,M.andVeenhuizen,P.A.,2003,Anal-ysisofslipinacontinuouslyvariabletransmission.Proceedingsofthe2003ASMEInternationalMechanicalEngineeringCongress(IMECE’03),Washington,DC.,November15–21. [11]Guebeli,M,Micklem,J.D.andBurrows,C.R.,1993,Maximumtransmissionefficiencyofasteelbelt continuouslyvariabletransmission.TransactionsoftheASMEJournalofMechanicalDesign,115,1044–1048. 406M.Pesgensetal. [12]Ide,T.,Udagawa,A.andKataoka,R.,1994,AdynamicresponseanalysisofavehiclewithametalV-beltCVT. ProceedingsoftheSecondInternationalSymposiumonAdvancedVehicleControl(AVEC’94),Tsukuba,Japan,Vol.1,230–235. [13]Ide,T.,Udagawa,A.andKataoka,R.,1996,Experimentalinvestigationonshift-speedcharacteristicsofa metalV-beltCVT.ProceedingsoftheInternationalCongressonContinuouslyVariablePowerTransmission(CVT’96). [14]Shafai,E.,Simons,M.,Neff,U.andGeering,H.P.,1995,Modelofacontinuouslyvariabletransmission. ProceedingsoftheFirstIFACWorkshoponAdvancesinAutomotiveControl,pp.99–107. [15]Slotine,J.-J.E.andLi,W.,1991,AppliedNonlinearControl.ISBN0-13-040890-5(EnglewoodCliffs,NJ: Prentice-Hall). [16]Ide,T.,1999,EffectofpowerlossesofmetalV-beltCVTcomponentsonthefueleconomy.CVT.Proceed-ingsoftheInternationalCongressonContinuouslyVariablePowerTransmission(CVT’99),Eindhoven,TheNetherlands,pp.93–98. 因篇幅问题不能全部显示,请点此查看更多更全内容