搜索
您的当前位置:首页正文

Geotechnics the next 60 years

来源:哗拓教育
´otechnique58,No.5,357–368[doi:10.1680/geot.2008.58.5.357]Simpson,B.&Tatsuoka,F.(2008).Ge

Geotechnics:thenext60years

B.SIMPSON*andF.TATSUOKA†

Theauthorsweresetthechallengeofthinkingaboutthe

´otechniquebutofgeotechni-next60years,notonlyofGe

calengineeringingeneral.Theyhaveattemptedtodothisbytalkingtocolleagues,bydreamingalittle,butmainlybytryingtoextrapolatethetrendstheyseeinsocietyandinpresent-daygeotechnicalactivity.Although

´otechniquetendstobere-theprincipalemphasisofGe

search,thisisdrivenbytherequirementsofdesignandconstruction.Hence,inlookingtothefuture,eventhefutureofresearch,likelytrendsingeotechnicalconstruc-tionactivitiesareconsideredfirst,particularlynotingtheemergingimportanceofenergyconservationandcarbondioxidereduction.Thisleadstodiscussionofthecharac-terisationofmaterialbehaviourandinvestigationoftheground,andthedevelopmentofdesignprocesses.Thefutureofdisseminationofgeotechnicalinformationisalsodiscussed.

KEYWORDS:constitutiverelations;environmentalengineering;groundimprovement;laboratorytests;numericalmodellingandanalysis;siteinvestigation;soilstabilisation

´fi,pourlesauteurs,c’e´taitdere´fle´chirsurles60Lede´esa`venir.NonseulementsurleplandeGe´otechni-anne

´otechniqueenge´ne´ral.Ceci,que,maissurceluidelage

´sdelefaireens’entretenantavecdesilssesontefforce

`gues,unpeudansunreˆve,etsurtoutenessayantcolle

d’extrapolerlestendancesqu’ilsperc¸oiventdanslasoci-´te´etdanslesactivite´sactuellesdansledomainedelae

´otechnique.Bienqu’enge´otechnique,onmettege´ne´r-ge

alementl’accentsurlarecherche,lamotivationest

´tudeetdelaconstruc-principalementlesexigencesdel’e

´quent,lorsqu’onsepenchesurl’avenir,tion.Parconse

ˆmel’avenirdelarecherche,onexamineenpremierme

´sdecon-lieulestendancesprobablesdanslesactivite

´structiongeotechnique,enrelevantnotammentl’impor-´nergieetlatancecroissantedelaconservationdel’e

´ductiondugazcarbonique.Ceciportea`desdiscussionsre

´risationducomportementdesmatie`resetsurlacaracte

´tudesdusol,etsurlede´veloppementdeme´thodesdese

´tude.Ondiscutee´galementdel’avenirdansladivul-d’e

´otechnique.gationd’informationsdege

INTRODUCTION

Inthispaper,theauthorstrytolookintothefutureofgeotechnicalengineering,forthenext60years.Theterm‘geotechnicalengineering’istakentoincludeallformsofengineeringactivityintheground,andinwhichthebehav-iourofthegroundisrelevant;investigation,design,con-struction,maintenanceandrelatedresearchareallincluded.Besidessoilmechanics,othernecessaryskillsmightincludehydrogeology,geology,biology,chemistry,rockmechanics,structuralengineering,thermodynamics,andmanyothers.AspointedoutbyHenkel(1982),anoverlapofskillsisessentialtosuccessfulgeotechnicalengineering.

´otechniquetendstoAlthoughtheprincipalemphasisofGe

beresearch,thisisdrivenbytherequirementsofdesignandconstruction.Hence,inlookingtothefuture,eventhefutureofresearch,likelytrendsingeotechnicalconstructionactiv-itiesareconsideredfirst:theseleadtoconsiderationofthecharacterisationofmaterialbehaviourandinvestigationoftheground,andthenecessarydesignapproaches.

Inpreparationforthepaper,theauthorssentoutaques-tionnairetoalargenumberofcolleagues,askingquestionsabouttheirviewsofthefutureoftheindustryandofresearchdevelopments.Theauthorsareverygratefulfortheanswersreturned,whichhelpedthemtochoosetopicsforinclusion,andmadeusefulsuggestionsaboutlikelyprogress.However,theauthorsacceptresponsibilityfortheviewsexpressedinthepaper.Obviously,anyviewofthefutureisspeculativeanduncertain,butforbrevity,withnointendedpresumption,statementsaboutthefuturearemadeinasimplefuturetense,generallyomittingwordingsuchas‘theauthorsexpect(orguess)that...’.

Thepotentialscopeofthediscussionisvast,sothepaperisrestrictedtoasmallselectionoftopics.Referenceshavebeenprovidedtocurrentinformationsources,partlyinthehopethattheymaybeofhistoricinterestatsometimeinthefuture.Theauthors’overallexpectationisthatthefuturewillinvolveadvancesingeotechnology,manyofthembeyondpresent-dayimagination.Butitisacknowledgedthatitcouldalsoinvolvestagnationorevenretrogressioninbothtechnologyandsociety:allofthesehavebeenexperiencedinhumanhistory.ToquoteNielsBohr:‘Predictionisverydifficult,especiallyaboutthefuture.’

Discussiononthispapercloseson1December2008,forfurtherdetailsseep.ii.

*ArupGeotechnics,London,UK.†TokyoUniversityofScience,Japan.

GEOTECHNICALCONSTRUCTION

Theaspirationsandachievementsofsocietyhavealwaysbeencharacterisedbystronginteractionwithdevelopmentsincivilengineering.Hencedevelopednationswillcontinuetowantimprovedinfrastructure,commercialandresidentialbuildings,andhigherenvironmentalstandards.Advancescanbeexpectedinallformsofgeotechnicalconstruction,in-cludingtunnellingandfoundations.Groundimprovementandreinforcementarelikelytobeparticularlyimportant,togetherwithmoreadvancedtechniquesforutilisationofbrownfieldsites.Developmentsincomputation,measurementandcommunicationwillprovidenewopportunitiesandenhanceexistingprocesses.

NotingtherecentreportsoftheIntergovernmentalPanelonClimateChange(2007),itislikelythattheproductionanduseofenergy,limitingitseffectonproductionofharmfulgases,andmitigatingtheeffectsofclimatechangewillbedominantthemesincomingyears.Thesewillnecessitatedevelopmentofnewgeotechnicalskillsandwiderdisseminationofcurrentlyrareskills,andtheywillalsorequireaconsiderableincreaseinconventionalcivilengineeringactivity.Thistopicwillbeconsideredexten-sivelybelow.357

358SIMPSONANDTATSUOKA

GROUNDIMPROVEMENTANDSOILREINFORCEMENT

Groundimprovementtechnologyisstilldeveloping,anditsapplicationsinpracticeareexpanding,involvingsoilreinforcement,nailing,mechanicalandchemicalstabilisa-tion.Groundimprovementwillbecriticallyimportantinfuturegeotechnicalpractice,forthefollowingpurposesinparticular.

(a)Morecost-effectiveconstructionofinfrastructure,with

betterbalanceofcutandfill.Reinforcementenablesreductioninbothcuttingandfillingquantities,withconstructionmuchmoreefficientthantheuseofconventionalsteelorconcreteretainingwalls.

(b)Reductionofthetotalconstructionenergyusedand

CO(c)Cost-effective2emissions.

preventionandmitigationofnatural

disasters,includingthosebylandslides,soilerosion,flooding,heavyrainfall,orearthquakes.

(d)Cost-effectivesolutionsofenvironmentalissues,includ-ingtreatmentandrecyclingofindustrialandurbanwastes,wastedisposalinlandfill,andpreventionofgroundwaterpollution.Continuedresearchanddevelop-mentofgeosyntheticsisanticipated.

(e)Effectiveuseofindustrialby-productsanddemolition

materials,includingtheuseofcrushedconcreteandashfrompowerplantsasconstructionmaterials.Useoftheseasveryhigh-qualityfills,wellcompactedandpossiblywithsomecementadded,meritsfurtherresearch(e.g.Aqiletal.,2005).

(f)Remediationtechniquesofpollutedgroundandsoils.(g)Maintenanceandrehabilitationofconstructionsthatare

decayingorwhichwerenotconstructedtocurrentlyacceptedstandards.Comparedwithconcreteandsteelstructures,deteriorationduetoageingisgenerallylesssignificantforsoilstructuresconstructedbycompactingunboundbackfill.Soilreinforcementcanbeusedeffectivelytoprovideprotectionfornaturalslopesandtoaugmentembankments,andthismaybecomemoreimportantinfutureifclimatechangeleadstomoresevereweatherevents.Groundimprovementtechniquesareusuallyusedeithertoreducethestressesintheground,particularlytheshearstress,ortoenhancetheshearstrength.Stressesinthesoilcanbereducedbytheuseoflightweightembankments,micropilingandtensilereinforcement.Forcompactionofexistingunboundbackfill,apartfromtheconventionalcom-pactiontechnologiesdiscussedabove,newcost-effectivecompactionmethods,suchasheavytampingandunder-groundandunderwatercompaction,willbedeveloped.Chemicalmethodsofincreasingshearstrength

Itisanticipatedthatmorepermanentsoilstructures,suchasbridgeabutmentsandfilldams,willbeconstructedbyusingcement-mixedbackfill.Also,morepermanentsuper-structureswillbeconstructedonandinexistingsoilstrataimprovedbycement-mixingin-placeandembankmentscon-structedusingcement-mixedsoil.Theboundarybetweencement-mixingtechnologyingeotechnicalengineeringandconcreteengineeringwillbecomelessimportant.

Supportingthesedevelopmentsinconstructionpractice,researchwillprovidebetterunderstandingofthestress–strainpropertiesofchemicallyimprovedgeomaterialbyproperlytakingintoaccountrelevantinfluencefactorsthatarenotimportantforuntreatedgeomaterials,suchastheeffectsofageing,heatandchemicalreactions,andtheircombinedeffectsandinteractionswiththeelasto-viscoplasticproperties.Onlyoncethestrengthanddeformationcharac-

teristicsofchemicallyimprovedgeomaterialsareproperlyunderstoodandevaluatedwilltheirusetoconstructimpor-tantprimarysoilstructuresbecomestandardgeotechnicalpractice.

Tensilereinforcement

Tensilereinforcingtechnologiesinclude:(a)thoseusedtoreinforceexistinggroundandslopes(e.g.nailing);and(b)thoseusedtoreinforcebackfill,usuallybyplacingmetalstripsorgeosyntheticreinforcementlayersduringconstruc-tion.Givenconfirmedlong-termdurability,bothtypesoftensilereinforcingtechnologyarebecomingusedroutinelyinmanycountries.

Ongoingdevelopmentoftype(b)isanticipatedforuseinpermanentstructures,suchasbridgeabutments,inplaceofconventionalconcretestructuressupportedbypiles.Forexample,Tatsuokaetal.(2007)describeareinforcedcon-creteintegralbridgewithabackfilledabutmentreinforcedwithgeosynthetics.Thedesignofthistypeofstructurerequirestheintegrationofgeotechnicalengineeringandstructuralengineering,asinthefoundationdesign.

Combinedchemical–mechanicalmethods

Thetechnologiesdescribedaboveareoftenusedinisola-tionatpresent,buttheiruseincombinationcouldbeparticularlypowerful.Combinationsofmechanicallyandchemicallystabilisedgroundwillbefounduseful,suchasmechanicallystabilisedbackfillstructuresconstructedonchemicallyimprovedsoftground.Permanentsoilstructures,includingfoundations,madeofcement-mixedbackfillorexistingground,reinforcedwithsteelorfibre-reinforcedplasticrodsorgeosyntheticreinforcement,willbecomepopularinsomesituations.

DEVELOPMENTOFBROWNFIELDSITES

Overthenext60yearstherewillbeanongoingneedtodevelopexistingbrownfieldsites:thatis,previouslydevel-opedland,whichmayormaynotbecontaminated.Theincreasingamountsofelectrical,electronic,chemical,house-holdandevennuclearwastewillpresentmajorchallenges.Engineersandscientistshavebeenenablingthedevelop-mentofbrownfieldsitesforhundredsofyears,bythesimpleprocessesofdigginganddumpingelsewhere,orbybreakingthepathwayofpollution,andcoveringup.Legislationwillcontinuetogettighter,requiringinnovativeremediationsolutions,possiblyusingtransferableskillsandtechniquesfromothersciences,suchasmedicine,biochemistry,physicsandbiology.Inadditiontodevelopmentintheuseofgeosynthetics,asnotedabove,suchsolutionscouldinclude(a)moresophisticated,possibleeven‘intelligent’,per-meablereactivebarriers

(b)heattreatments,perhapsharnessingsolarpoweror

geothermalpower

(c)injectedchemicaltreatmentsthatwouldeither‘fix’

contaminantsorcreatebarriers

(d)theuseofplants,possiblybiomassfuelplants,tobe

grownoncontaminatedsitesto‘adsorb’contaminants(e)nanotechnology,suchasthenanozero-valentiron

technologies,inwhichhighlyreactivenanoironparticlescauselessreactivemetalstoprecipitateontothem(Ifpresentuncertaintiesaboutsafetycanbetackled,thistechniquemaybesuitablefortheremediationofverydeepplumesofcontaminatedgroundwater,injectingnano-sizedironparticlesdeepintothegroundthroughwells.)

GEOTECHNICS:THENEXT60YEARS

359

(f)betterriskassessmenttechniques,usingabetterunder-standingofthetoxicologyofisolatedandinteractingchemicals,possiblyeliminatingsomecurrentconcerns.Itispossiblethatlandfillingascurrentlypractisedwilleventuallydisappear,withimprovedtreatmenttechnologiesallowingthereuseandsharingofsurplussoils,perhapsthroughregionaltreatmentandstoragecentres.Alternatively,insteadofremediation,itmightbecomethenormtoleavecontaminationintheground,developoveritsafelybyisolatingtheenduserandtheenvironmentfromit,allowgroundwatertobecomepolluted,andremediateortreatitonlywhenitisextractedforuse.

Interpolatinglevelsofpollutionbetweenasmallnumberofscatteredsamplesmaybeverymisleading,sonewmeth-odsofinvestigation,detectionandmeasurementareneeded,combinedwithstatisticalanalysis.Weanticipatethedevelopmentofremotesensingtechniquesandofadvancedsoilprobesthatcancarryoutcontinuoussamplingandtestinginsitu.

Hopefully,societywilllearnthelessonsofthepastandavoidcreatingnewbrownfieldsites.Whateverhappens,engineerswilluseaconsiderablevarietyofsolutions,rememberingthatsometimesthesimpleonesarebest.UNDERGROUNDSPACEANDTUNNELLING

Greateruseofundergroundspaceisanticipated,bothasaccommodationandtoimprovetheefficiencyoftransporta-tion,requiringnovelandmorepowerfulconstructiontechni-ques.SomerecentdevelopmentsarediscussedbySimpson(2007a),notingthatconstructionbelowthesurfaceofthegroundoffersnotjustmorespacebuttheadvantagesofawholenewdimension.Admiraal(2006)hasrightlypointedout,however,that‘undergroundspaceisnotavirtuallylimitlessreservoirwaitingtobeexploited’.Arguingthathumanshaveanurgentneedtoexploitthespacebelowthegroundsurface,healsoadds‘butneithercanitbepreservedasanaturereserve’.

Majorexcavationsincitiesaredisruptiveandpotentiallydamaging,soitisimportanttomonitorstressesanddispla-cementsinstructuresandtheground.Wecanexpectmuchgreaterapplicationofrecentdevelopmentsintechnologies,suchasfibreoptics,wirelesscommunication,measurementfromsatellitesandtheuseofinternetdatabases,andfurtherdevelopmentswillmakethemmorecommoninthisandotheraspectsofgeotechnicalengineering.

Technicaldevelopmentsareanticipatedbothinsprayedconcretetunnellingandinshieldtunnellingtoreducegrounddeformationandprovidecost-effectiveconstruction,withautomationofexcavationandliningerection.Innovativemethodsofformingundergroundspacessuchasstationswillincludemultiple-tubetunnels,asdescribedfortheShanghaiRailTransitProjectbyChow(2006),orthemulti-microshieldtunnellingdescribedbyHirosue&Kagami(2006),atech-niquethatallowstheconstructionoflargerectangularunder-groundspacesbytunnelling,withouttheuseofcut-and-cover.ENERGYANDCARBONCONSIDERATIONS

HelpingenergyuserstoreducecarbondioxideemissionsIntheUnitedKingdom,heatingandcoolingoflivingspaceandwateraccountforabout34%ofhumanenergyusage(DepartmentofTradeandIndustry,2003).Thegeo-technicalprofession,alongwithmanyothers,isseekingwaysofmakingthisprocessmoreefficient,andthepossibi-litiesofusingthegroundasasource,oratleastasastore,ofheatandcoldshowsomepromise.Admiraal’sstatementsonthelimitationsofspacebelowground,notedabove,are

equallyapplicabletoitsuseforthermalpurposes,andabalanceofheatinputandoutputisusuallynecessary.

Forrelativelysmallbuildingssurroundedbyalargeamountofopenland,itispossibletopumpwaterinpipesthroughthegroundatshallowdepth,typicallyabout1.5mbelowthegroundsurface,inordertoexchangeheat.Con-cernsabouttheeffectofthisprocessonvegetation,includ-ing,intheextreme,freezingthegroundatshallowdepth,requirecarefulconsideration.Inprincipleitmaybepossibletousethistypeofsysteminan‘unbalanced’manner,thatis,forunequalamountsofheatingandcooling,relyingonheatinterchangewiththeatmospheretomakeupthedifference.Thisrequires,inparticular,greaterunderstandingofthethermalandhydraulicpropertiesofthelayersofsoilclosetothegroundsurface,whicharegenerallyunsaturated.Manyauthors(e.g.Brandl,2006;Law&Nicholson,2006;Hofinger&Adam,2007)havediscussedsystemsforinterchangeofheatwiththegroundatdepth,usingeitherwellsorconductionthroughconcreteelementssuchaspilesandretainingwalls.Theyhavegenerallyshownthat,inmostcasesinvolvinglargebuildings,thegroundcanbeusedonlyasatemporarystoreofheatorcooling,oneitheranannualoradailybasis.Onlyinrarecaseswherethereisasignifi-cantflowofwaterthroughtheground,andnoenvironmentalrestrictionspreventingwateratamodifiedtemperatureflow-ingfromthesite,canheatbetakenfromortransmittedintothegroundwithoutaneedforlong-termbalancing.

Transferofheatorcoldintothegroundisusuallybyflowoffluidfromtheaffectedstructure,eithertostructuralelementswithlargesurfaceareasincontactwiththeground,suchasfoundationslabs,pilesorretainingwalls,orbydirectflowofthefluid,inthiscasewater,intoandoutoftheground.Inthelattercase,flowmaybethroughthematrixofasoilorthroughthejointsofarock.Thereisaclearoverlapherebetweenthedisciplinesofsoilmechanics,rockmechanicsandhydrogeology,andcombinationsofexpertiseinallthreewillbeneeded.

Whereitisnotpossibleforonestructureorinstallationtousetheheatitproduceswithintheannualcycle,theheatcouldpotentiallybesharedwithotherusers.Forexample,intheUnitedKingdom,manylargebuildingscurrentlyproduceexcessheatoverthewholeyear,butmostdomestichomesdonothaveairconditioninganduseenergyonlyforheating.Onesolutioncouldbetore-planmuchoftheurbanareas,andbeyond,soastobringproducersandusersofheatnearereachother(e.g.Ward,2008).Reorganisationofthebuiltenvironmentonsuchascalewouldinevitablyleadtoamassiveamountofcivilengineeringconstruction,includingthenecessarygeotechnicalengineering.Whilemuchofthiswouldbeconventionalinnature,economyintheuseofenergyandincarbondioxideemissionswouldbeveryimportant,asdiscussedfurtherbelow.

Somesimpleopportunitiestotakeheatfromproducerstousersmayalreadyexist,andcouldbegeotechnicalinnature.Forexample,thepossibilityhasbeendiscussedofcoolingundergroundraillinesbyconductingtheheatintotheground,andlaterextractingitfordomesticheatinginhomesclosetotheundergroundlines.Itcouldbetakenouttohomesonthesurfaceabovebywatercirculatinginpilesorwells.Hofinger&Adams(2007)describetheheatingofaschoolinthisway,andmentionslabs,piles,tunnelliningsandalsogroundanchorsasdevicesthatcanbeusedtotransmitheatintotheground.

Thisbriefreviewofwaysinwhichgeotechnicalengineer-ingmighthelpsocietytoreducecarbondioxideemissionsshowsthatgeotechnicalengineerswillneedtodevelopabetterunderstandingofthethermalbehaviouroftheground,intermsofbothitscapacitytotransmitandretainheat,andtheeffectsoftemperaturechangeonotherpropertiessuch

360SIMPSONANDTATSUOKA

asstrength,stiffnessandsolubilityofsolidcomponentsingroundwater.Unsaturatedsoilmechanicsandbiologicalissuesmayalsoberelevant,andhydrogeologywillbeveryimportant.Itisunlikelythatsingleindividualswillbefullycompetentinallthesedisciplines,butengineersmightdevelopcompetenceinvariouscombinationsofthem,andeducationcoursescouldalsocombinetheminsomeway.Todate,mostofthepublisheddataonheatinterchangewiththegroundrelatetotrialsratherthantofull-scaleconstructions,andafullexplanationofthescienceisrarely

provided.ItisthereforeverytimelythatGe

´otechniquewillholdaSymposiuminPrintin2009onthesubject‘Applica-tionsaffectedbythethermalcharacteristicsoftheground’.Reducingenergyusageandcarbondioxideemissionsinconstruction

Theprocessofcivilengineeringconstructionisamajoruserofenergyinitsownright,soitwillbeimportanttoreducethiswhereverpossible.Itisanticipatedthatstudiesofthewhole-lifeenergyusageofprojectswillbecomemorecommon,requiringcomparativeassessmentoftheembodiedenergyinconstructionmaterials,energyusagetoformaconstruction,andenergyrequiredduringtheoperationallifeofastructure.

Forexample,Chauetal.(2006)haverecentlystudiedtheembodiedenergiesofvarioustypesofembeddedretainingwall.Theynotethatthemanufactureofbothsteelandcementconsumesalotofenergy,andtheyconcludethatsteelwalls,usingrecycledsteel,havemuchlessembodiedenergythanconcretewallsofsimilarstiffness.However,theuseofvirginsteel,nowcomparativelyrareinEuropeanconstruction,entailsmuchmoreembodiedenergy.

Reducingembodiedenergyinconstructionwillleadtogreaterreuseofmaterials,theuseofpoorer,butlocallyavailable,fillmaterials,andgreateruseofmanyformsofgroundimprovement.ReuseofpiledfoundationshasbeenstudiedatsomelengthintheRUFUSproject(Chapmanetal.,2004),andconsiderationsoftheuseoffillandstructuralmaterialsinconstructiononsoftgroundarediscussedbyO’Riordan(2007)onthebasisofitsimportancetothedesignoftheChannelTunnelRailLinkintheUK.

Theauthorsanticipatethatpractisinggeotechnicalengi-neerswillneedtobecomeproficientinassessingtheenergyrequirementsofconstruction,andthiswillalsobeanimportantaspectofresearchincomingyears.

Alternativesourcesofenergy

Formanyyears,geotechnicalengineersandgeologistshavebeencriticallyinvolvedintheextractionofcoal,oilandgasonlandandsea,andintherelatedinfrastructure.Itisanticipatedthatthiswillcontinue,perhapswithrenewedemphasisoncoalasoilandgaspotentiallybecomemorescarce.Interactionsbetweenminingengineering,geology,rockmechanicsandsoilmechanicswillbeessential.If,asseemslikely,itisnecessarytoextractoilandgasfromdepletedormarginalfields,betterunderstandingofthegeomechanicsofoilandgasreservoirswillbeimportant.Forexample,problemssuchas‘sanding’duetooverstressingofsandstonewillrequiremoreinvestigationtogiveabetterunderstandingoftherockandsoilmechanicsinvolvedinthecrushingofthematerial.Workonthisisalreadyunder-wayatvariousresearchcentres.

Ifoilandgasstarttobecomemorescarce,coalwillprobablygrowinimportanceasaprimarysourceofenergy.InChina,forexample,thereiscurrentlyarapidexpansionindeepcoalmining,withminestypicallyextendingtodepthsexceeding1km.Elsewhere,opencastworkingrequiresthe

formationofdeepquarries,withtheattendantproblemsofslopestabilityandwatercontrol.Althoughtheseformsofminingaregenerallyseenassomewhatspecialist,theyrequirethebasicdisciplinesofsoilmechanicsand,especially,rockmechanics,andtheparticularskillsofcombiningtheory,analysis,observationandprecedentthatcharacteriseallformsofgeotechnicalengineering.Again,therearemanypotentialopportunitiesforacademicinvolvement.

Associetytriestoreduceitsdependenceoncarbonfuels,andlooksforalternativesourcesofenergy,newgeotechnicalchallengesarise:wind,tideandnuclearenergyareconsid-eredhere.

Itislikelythatverylargenumbersofwindturbineswillbeconstructedinthecomingyears,bothonshoreandoffshore.Manyofthesemayrequirerelativelyconventionalpiledfoundations,butthesheernumberofthemarguesforcarefulreviewofthedesignprocesstooptimisethebalanceofrobustnessandeconomy.Largeroffshoreturbineswillprob-ablyusesuctionfoundations,whicharesubjecttocontinuingresearchanddevelopment(e.g.Houlsby&Byrne,2005).

Harnessingtidalpowerisachallengeoftenconsidered,butrealisedonasignificantscaleonlyintheschemeatLaRance,France,whichproducesabout100MWofpoweronaverage(EDF,2007).ThisistheonlytidalpowerschemeinEurope,andthelargestintheworld.TheSustainableDevelopmentCommission(2007)hasreportedthattheUKhasthepotentialtousetidalpowerasoneofitsmajorenergyresources,particularlyintheSevernEstuary,pro-videdtheenvironmental,socialandeconomicalimpactscanbemitigated.Anydevelopmentoftidalpowerrequirestheconstructionofverylargebarrages,probablyearthdams,whichhasbeenuncommoninmuchoftheworldinthelastfewdecades.Itseemsunlikelythatmanysuchschemeswillbebuilt,sotheirimpactonthegeotechnicalindustryasawholemaybefairlysmall.However,somerevitalisingofexpertisewillbeneeded,andsuchlargeprojectscouldwellspawnresearchopportunities.

Aresurgenceofconstructionfornuclearpowerseemslikely.Apartfromfoundationsforveryheavyloads,thisleadstotheneed,whichinfactalreadyexists,fordeepdisposalofnuclearwaste,anissuewithmanygeotechnicalaspectsandthefocusofconsiderablecurrentresearch.Suitablestrataofrelativelyimpermeablerockorclayhavetobelocatedandtested,requiringlargeinvestigations.Geologi-calstabilityisparticularlyimportant,giventhatthereposi-torymayhavetoremainsafeformuchlongerthantheageofourpresentcivilisation.Thebehaviourofthematerialandwaterinporesorfissuresastemperaturechangeshastobeunderstood,togetherwiththegroutsandclaysusedtosurroundandcontaintheradioactivewaste;someofthismaterialwillinitiallybeunsaturated.Assomeradionuclideswillinevitablyescapetheirimmediatecontainment,theiradsorptionontotheparticlesurfacesofsurroundingmaterialswillbeimportant,aswillafullunderstandingoftheirmove-mentthroughthematerialsingroundwater.Geotechnicalengineeringandnuclearengineeringwillclearlyoverlapin

thesestudies;theGe

´otechniqueSymposiuminPrintof2007containsseveralrelevantpapers(Bernieretal.,2007;Delageetal.,2007;Gensetal.,2007;Piriyakuletal.,2007).GeotechnicalengineeringwillalsocontributetothesaferconstructionofnuclearpowerplantsinhighlyseismiczonessuchasJapanbymorereliablepredictionoftheinputmotiontothestructuresandtheseismicstabilityofthesupportingground,andbythedesignoffoundationstructures.

Mitigatingeffectsofclimatechange

Potentialeffectsofclimatechangevaryaroundtheworld,includingrisingsealevel,moresevererainfallevents,and

GEOTECHNICS:THENEXT60YEARS

361

hotter,drierconditions.Needsforneworrenewedstructuresforseaandriverdefencecanbeexpected.Verymajorconstructionsmightbeneeded,possiblyfundedonaglobalbasis,iflargeareasoflow-lying,populatedlandarenottobelost.Suchstructures,forexampleonthescaleoftheOosterscheldeBarrier,completedintheNetherlandsin1996,naturallyleadtomajoradvancesinsoiltestingandresearch,andalsoinconstructiontechnology.

Thestabilityofbothexistingandnewslopes,cuttingsandembankmentscouldbechallengedbyheavierrainfall,re-quiringreassessmentandmodification.Similarly,foundationdesignscouldbeaffectedbyhigherormorevariablewatertables,orbymoreseverecyclesofdryingandwetting,especiallyinshrinkableclays.Currentresearchinunsatu-ratedsoils,andintotheeffectsofcyclesofsaturationanddesaturation,willbeimportant,andmorewillbeneeded,incombinationwithfieldstudies,tounderstandandcontrolthisdifficultareaofgroundbehaviour.

Gashydrates

Methanegashydratesaresolid,ice-likecompoundsformedfromhydrogen-bondedcagesofwatermoleculesenclosingmethanemolecules,whichcanleadtolargevolumesofmethanegasbeingstoredwithintheirstructure(Sloan,1998).Thesecompoundsarewidespreadinthetopfewhundredmetresofsedimentbeneathcontinentalmarginsinwaterdepthsgreaterthanafewhundredmetres(owingtothetemperatureandpressurerestrictionsunderwhichhy-dratesform).Thishasledtogashydratesbeingofinterna-tionalimportancewithregardtothefollowing.

(a)Thepotentialtobeafutureenergyresource:1m3of

hydrateisequivalentto164m3ofmethanegasatstandardtemperatureandpressure.Theestimatedglobalvolumeof3methanestoredinhydraterangesfrom2to431016matstandardtemperatureandpressure(Kvenvolden,1988,1998;McDonald,1990),whichistwicethetotalreservesofhydrocarbonenergyfromallotherfossilfuels.ExplorationwithaviewtothedevelopmentofhydratereservesiscurrentlyunderwayinIndia,China,Japan,MalaysiaandKorea.Geotech-nicalengineerswillplayanimportantroleinthisdevelopment.

(b)Theirroleinglobalwarming:methanegasthatis

containedingashydratesis20timesmorepotentasagreenhousegasthancarbondioxide.Ithasbeenpostulatedthathydratedissociationandthereleaseofmethanegasintotheatmospherewouldsignificantlyincreaseglobalwarming.Hydratedissociationmayhavebeenthecauseofsomeofthemassextinctionsinthegeologicalpast(Haq,1998).Geophysicists,supportedbygeotechnicalengineers,areplayingakeyroleindevelopingmoreeffectivewaysofdetectinghydrates.(c)Thepossibilityofbeingageotechnicalhazard:upon

dissociation,ice-likegashydrateconvertsbacktoitsindividualcomponentsofgasandwater.Thiscanleadtoareductioninstrengthofthesedimentalongwithachangeinstressconditionsduetotheover-pressurisa-tioncausedbythereleaseofmethanegas.Thishasbeenlinkedtolarge-scaleslopefailuresoncontinentalmarginsthathaveoccurredinthegeologicalpast(Kayen&Lee,1991;Popenoeetal.,1993;Meinertetal.,1998;Ashi,1999;Berndtetal.,2002).Onasmallerscale,offshoreoperatorsareincreasinglywork-ingonpotentiallyhydrate-bearingsedimentsoncon-tinentalslopes(e.g.theOrmenLangedevelopmentoffNorway).Itisfearedthatdrillingactivitiesmightbecapableofdissociatinggashydrates,givingrisetooil

platformblowouts,casingfailuresand,attheextreme,platformsubsidence(Bily&Dick,1974;Franklin,1980).Geotechnicalengineersareinvolvedintestingtoexaminetheeffectsofdissociationonthepropertiesofhydrate-bearingsediment,andinmodellingtheseeffects(e.g.bydevelopingcoupledthermo-chemo-mechanicalnumericalelementmodelling).

Thechallengesofdeterminingthethermo-chemo-mech-anicalproperties,throughinsituandlaboratorytestingofsedimentsfoundatwaterdepthsofthousandsofmetres,andthenmodellingtheimpactsofhydratemining,globalwarm-ing,andhydrocarbonexploitation,areenormous,andareincreasinglyinvolvinggeomechanicsresearchers(e.g.Claytonetal.,2005;Priestetal.,2005;Sogaetal.,2007).

SOILMODELLING

Thedevelopmentofstress–strainmodelsforsoils,mainlyforuseinfiniteelementanalysis,hasbeenamajorfeatureofresearchoverthelast60years.Inpractice,thecommonlyusedmodelsarerelativelysimple:elasticMohr–Coulombmodels,modifiedCam-clay(Roscoe&Burland,1968)andsmallextensionsofit,anddevelopmentsofthehyperbolicmodelsofDuncan&Chang(1970).AfewmorecomplexmodelsareinregularuseintheUK(e.g.Jardineetal.,1986;Simpson,1992),butmostmodelsdevelopedinre-searcharerarelyused,perhapsbecausetheyrequiremanyparametersthataredifficulttoevaluate.

The2007Ge

´otechniqueSymposiuminPrintservedtoillustratetheverygreatcomplexityofrealsoilbehaviour(e.g.Simpson,2008),andthoughitsrelevancetopracticalproblemswasapparent,therewasstillacleargulfbetweenwhatcouldbeunderstoodinprincipleandwhatcouldbeappliedinpractice.Notonlythedeformationpropertiesbutalsothestrengthofsoilsarepoorlymodelledinengineeringpractice(Hightetal.,2007).Tatsuokaetal.(1991,1997)andSiddiqueeetal.(1999)havepointedoutthatfailuretoconsidertheeffectsofdeposition,progressivefailureandothereffectsindensesoilscanleadtolargeoverestimatesofavailableshearstrength,whilefailuretorecognisetheeffectsofgrainsizeortousethebenefitsofgoodcompactionmayleadtounderestimates.

Furtherresearchisanticipated,mainlybyacademics,tocapturethestress–strainbehaviourofsoilmoreaccuratelyinordertodevelopmorerealisticmodels.Theaimsofthedevelopmentwillinclude

(a)moredetailedunderstandingofstress–strainand

hydraulicbehaviour

(b)moregeneralunifiedmodels

(c)modellingofsoilparticlesandinterparticlecontactsfor

numericalmethodsthatcandirectlysimulatetheparticulatenatureofsoil(e.g.thediscreteelementmethod,DEM).Forthepurposesofpracticaldesign,simplemodelswillcontinuetobeapplied,butthesewillbemostusefulandreliablewhentheuserisinformedbythebestpossibleunderstandingofrealbehaviour.Technologytransferfromresearchtopracticewillremainimportant,thoughoftendifficulttoachieve.

Moredetailedunderstandingofbehaviour

Thedeformationpropertiesofgeomaterialsaredifferentfromthoseofmostman-madematerialsinseveralimportantrespects.

362SIMPSONANDTATSUOKA

(a)Theirbehaviourisessentiallyfrictional,withorwithout

interparticlebonding.

(b)Theydisplayanextremelywiderangeofstrengthsand

stiffnesses.

(c)Theirpropertiesarenon-constant:theyreadilychange,

controlledbysuchfactorsasdensity,confiningpressure,stresshistory,rateeffects,andageingeffects.(d)Theirpropertiesarecomplex,with,forexample,

extremelyhighstrainandstressnon-linearity,largeeffectsofstresshistory,dilatancy,anisotropy,andstrain-softeningassociatedwithshearbanding.Becauseoftheinherentlydifficultnatureofgeomaterials,theircharacterisationandmodellinghavedevelopedfromsimplifiedpictures—essentiallyslipsurfaceorcontinuummodels—usedintheearlystagesofgeotechnicalengineer-ing.

Theclassicalgeomechanicstheoriesofearthpressure,bearingcapacityandslopestabilityprovideasimpleillustra-tionofthispoint.Althoughbasedondifferentmathematicalmethods(upper-orlower-boundtypesorlimit-equilibriumtypes)anddifferentfailuremechanisms,mostofthemassumeisotropic,perfectlyplasticsoilpropertieswithzero-thicknessshearbands(i.e.shearsurfaces).Thissimplifiedclassicalsoilmodelignoresnotonlypre-peaknon-linearstress–strainbehaviourbutalsoanisotropy,andstrain-soft-eningwithshearbandshavingathicknessproportionaltoparticlesize(e.g.Finnoetal.,1997;Okuyamaetal.,2003).Becauseofthis,realisticpredictionofgrounddeformationandstructuraldisplacementsbyclassicalsoilmodelsisnotpossible(e.g.Siddiqueeetal.,1999),andcontinuedresearchwillbeneededtoincludeawiderrangeoffeatures.Mathe-maticalconsistencyorcorrectnessalone,oftensoughtinacademicgeotechnicalstudies,arenotsufficient.

Moreaccurateandreliablepredictionofdisplacementsduringconstruction,inthelongterm,andduetoloadingsuchasearthquakeswillcontinuetobechallenging.Presenttrendsinthepredictionofdisplacementsaremoving(a)towardscomplexnon-linearanalysis(b)towardselasto-viscoplasticanalysis

(c)towardstheinclusionofcyclicloading,chemical

effects,ageingeffectsandthermaleffects

(d)towardsincreasedconsiderationofcouplingeffects

amongtheseeffects(probablyimportant,butlittleunderstoodatpresent)

(e)towardsmoredevelopmentsinunsaturatedsoilmech-anics.Capabilitiesforthepredictionoftime-dependentgrounddeformationandresidualstructuredisplacementsduringlong-termservicearestillverypoor.Forexample,topredictthesecondaryconsolidationofclay,bothviscousandageingeffects,interactingwithyieldingproperties,shouldbetakenintoaccount.Althoughtheeffectsofageingcanbeevalu-atedtosomeextent,ourunderstandingoftheactualprocessofageing(usuallybychemicalandthermaleffects)isverypoor.Thisrelatestobothengineeringandgeologicaltime-scales,andiscoupledwithyielding,viscousandthermaleffects.

Untilquiterecently,mostsoilmodellingwasforsaturatedsoilsordry,coarse-grainedmaterials.Thebehaviourofpartiallysaturatedsoilsisnowattractingmuchattention,stimulatedbyconstructionindrierregions,theimportanceoffillmaterialsinmostregions,andgrowinginterestinconditionsaroundproposeddeeprepositoriesfornuclearwaste(e.g.Gensetal.,2007).Althoughthisseemstobeonemorecomplexfeaturetoaddtosoilbehaviour,itislikelythatreasonableapproximationstothebehaviourcanbeachievedwithoutunduecomplexity.Climatechangeand

theneedfornuclearpowerarelikelytodrivethistopicforwardinthecomingdecades.

Futureactivitiesinthedeepseaandonotherplanetsmayneednewframeworksoftheorytoincludetheeffectsofveryhighporewaterpressure,ofstress–strainbehaviouratverylowpressureandatverylowandhightemperatures,andofporefluidsotherthanwater.Itwillbecomenecessarytodecidetheextenttowhichcurrentideascanbeextendedtothesenewconditions.

Moregeneralunifiedmodels

Toachieveoriginality,researcherstendtospecialiseinnarrowtopics.Forexample:

(a)Researchersspecialisingeitherinsaturatedsoftclayor

inunboundgranularmaterialsdevelopdifferentcon-stitutivetheoriesandmodels.

(b)Researchersspecialisinginsoilmechanicsandrock

mechanicsdealdifferentlywithdiscontinuitiesandheterogeneitiesinagivengeomaterialmass.

(c)Geotechnicalresearchersquantifythephysicalproper-tiesofagivenstratum,whereasgeologistsdescribequalitativelythewholestructureofagivenstratum.Ontheotherhand,ingeotechnicalengineeringpracticeengineershavetodealwithawidevarietyofgeomaterials,requiringnotonlythedetailedbehaviourofindividualspeci-mensbutalsoaqualitativedescriptionofthewholestructureofagivenstratum.Increasedeffortstodeveloptheoriescoveringdifferenttypesofgeomaterial(boundandunbound,fromsoftclays,sandsandgravelstorocks,saturatedandunsaturated)wouldbeverybeneficial,sincemanyrealgeomaterialsfallbetweenthevarioustypes.Nevertheless,itwouldbeamistaketoloseimportantaspectsofthemodel-lingofonematerialbytryingtomakeitfitamoregeneralframework.Inparallel,effortstomergesoilmechanicsandrockmechanicsaswellasgeotechnicalengineeringandappliedgeologymaybecomemorerelevantandthereforebepursued,firstinpractice,thenineducation,andtheninresearchandinlearnedsocieties.

Modellingsoilparticlesandinterparticlecontacts:theDEMAlthoughsoilisaparticulatematerial,thisnatureisusuallynotdirectlytakenintoaccountinsoilmodelling.Recently,thediscreteelementmethod(DEM)hasbecomepopularbecauseitcancapturethebehaviourofparticulatematerialsbetterthanthefiniteelementmethod(FEM).

ManyrespondentstothequestionnairesentoutbytheauthorssuggestedthattheDEMwouldbeaprominentfeatureofdevelopmentsinanalysis.Analysestodatehavebeenlimitedtoabout105particles,generallycircular(2D)orspherical(3D),butonerespondentsuggestedthatcomput-ingpowerandtheuseofparallelprocessingwillallowanalysesof106oreven109particles.Cundall(2001)hassuggestedthat1011particlescouldbeavailablewithin20years.Althoughthese3numbersseemimpressive,itisob-servedthatin1mthereare106cm3and109mm3,sorealsoilswouldhaveconsiderablylargernumbersofparticlespercubicmetre,eachparticlebeingcomplexinshape.Hencetheprospectofmodellingmostrealboundaryvalueproblemsonaparticle-by-particlebasisseemsremote.Itmightbepossibletomodelpracticalsituationsusingmuchlargerparticlesprovidedanappropriatescalinglawisadopted,assuggestedforaslopestabilityproblembyCundall(2001),butsituationsinvolvingstrainlocalisationintoshearbandsandporewaterflowinnarrowbandswillbeparticularlydifficult.

TheDEMhasbeenusedasa‘computerlaboratory’to

GEOTECHNICS:THENEXT60YEARS

363

simulatedirectsheartestsortriaxialtests(e.g.Cuietal.,2007;Zhang&Thornton,2007)andtoinvestigatesoilliquefaction(ElShamy&Zeghal,2005),anditcouldhaveotherimportantapplicationsinmorefundamentalwork.Forexample,ithasbeenusedinstudiesoftherelationshipsofinterparticlefriction,rollinganddilationtotheangleofshearingresistanceö9(Thornton,2000),andinstudiesofthesignificanceofparticlecrushinginexplainingthefamil-iarlog-linearcompressionbehaviourofsoils(e.g.McDowell,2002;Chengetal.,2004).Otherfeaturesofsoilbehaviour,includinganisotropyofstrengthandstiffness,andcreep,mightalsobestudiedinthisway.

TheDEMneedssoilpropertycharacterisationsthataretotallydifferentfromthoserequiredforcurrentlyusedgeomaterialmodels.FormorerealisticsimulationsbyDEManalysesofthestress–strainbehaviourofgeomaterialfromsmallstrainstowardsresidualstate(andalsoflowbehaviour)inresearchandpractice,developmentofthefollowingaspectsisanticipated

(a)simulationsoftheeffectsofparticleshape,stiffness,

strength,crushability,etc.

(b)amorerealisticdescriptionofinterparticlecontacts

(elasto-viscoplastic,withandwithoutbonding)

(c)asignificantincreaseintheparticlenumbersthatcan

besimulated,sothatshearbandinginalargesoilmassasencounteredinfieldboundaryvalueproblemscanbecaptured,and3Dsimulationsbecomefeasible.Eventhen,forpracticalapplication,calibrationofthemodelbylaboratorystress–straintestsand/orfull-scalefieldmonitoringwillalwaysbenecessary.TheessenceoftheDEMistorecognisetheparticulatenatureofsoils,incontrasttothebasicassumptionsofcontinuummechanics.Evenifthisformofcomputationdoesnotprovetobeviable,itislikelythatcomputationsthatmodelthenon-continuousnatureofsoils,withdiscreteloadpaths,fracturesandsimilarfeatures,willbecomeimportantandmightprovideamajorstepforward.Aparadigmshiftinthinkingmaybeneededtoapplytheresultsinpracticalengineering.

Reducingthegapbetweenresearchandpractice

Thereareseveralreasonsforthecontinuinguseofclassicalsoilmechanicsinpractice,includingthefollowing.(a)Itisstillverydifficulttocapturethecomplete,accurate

pictureofagivensoilstratuminthefieldwithsufficientdatatorepresenttheimportantfeaturesdiscussedabove.Thisisbecauseofinherenthetero-geneityduetothecomplicatedhistoriesofdepositionandloadingofsoilstrata.

(b)Thebestavailablesoilmodelsareusuallyhighly

complex,withmanyparametersnoteasilydetermined.Theanalysesmaybeverycostly,thoughnotveryreliable,dependingcriticallyonsmallvariationsinsomeparameters.Atpresent,thegapbetweentheacademicsoilmodelsandthoseusedindesignisincreasing,except,perhaps,inthedesignofspeciallargeprojects.Itisoftenimpracticalforadesignertodevelopafullunderstandingofacomplexmodel,whichmightcontainmanyfeaturesnotrelevanttotheprobleminhand.Thedevelopmentofsimpler,morerobustmodelsthatreproducefeaturesrelevanttoalimited,butclearlydelineated,rangeofsituationswillthereforeremainimportant.

InJapan,becauseoftheveryhighdesignseismicloadsusedinthedesignofinfrastructurefollowingthe1995KobeEarthquake,ithasbecomenecessarytousethepeak

strengthaswellastheresidualstrength,ratherthanadesignshearstrengththatpreviouslyhadbeenessentiallythesameastheresidualshearstrength.Possibleeffectsofparticlesizearealsotakenintoaccountifnecessary.Initialexamplesofthisapproachinclude(a)modifiedMononobe–Okabedynamicearthpressure

theory(Kosekietal.,1998)

(b)modifiedNewmarkmethodtoevaluateseismicslip

displacements(Okuyamaetal.,2003)

(c)limitequilibriumanalysisusingresidualstrengthto

obtainthesafetyfactorforthecriticalfailureplanethatissoughtinadvancebylimitequilibriumanalysisusingpeakstrength(Tatsuokaetal.,1998:Leshchinsky,2000).NewJapaneserailwaydesigncodesincorporatepartoftheabove(RailwayTechnicalResearchInstitute,1999,2007;Kosekietal.,2008).

GEOTECHNICALINVESTIGATIONS

Informationcurrentlyavailablefordesignisofteninsuffi-cienttoproviderealconfidenceandeconomy,especiallyinthecaseofexistingstructuresfacingnewthreatssuchasnaturaldisasters.Moreover,standardsofdesign,constructionandmaintenancewillcontinuetodevelop,requiringnewdatasetsofgroundinformation.

Thedevelopmentofcost-effectivesiteinvestigationwillcontinue,withtheaimofcapturingtheoverall,detailedandaccuratepropertiesofagivensoilstratum.Thiswillentailintroducingnewtestmethods,andimprovementsinsoft-ware,hardwareanddatainterpretation.

Insitutesting

Geotechnicalfieldinvestigationwillalwaysbeimportant,anddevelopmentstobeexpectedincludethosenotedbelow.(a)Theuseofexistingsoundingtechnologies,including

theSPT,conepenetrometers,pressuremetersanddilatometers,willcontinue.Bettercorrelationsbetweentheiroutputsandgeomaterialbehaviourwillcontinuetobesought,basedonthelatestgeomechanicsknowledgeandinformation.Forexample,mostoftheexistingempiricalcorrelationsdonottakeintoaccountanisotropy,strainandpressurelevelnon-linearity,ortheeffectsofstressorstrainhistories.

(b)Morecost-effective,yetreliablyaccuratedirectevalua-tionsofsoilproperties(e.g.stiffnessvaluesatdifferentstrainlevelsandshearstrength).Inthisrespect,moredevelopmentanduseofnon-destructiveinsitutesting(e.g.geophysicalmethods)canbeexpected,includingremotesensingtechniquestocapturetheelasticpropertiesinanareamuchwiderorinalargergeotechnicalmassthantheselectedpointswheresoundingsareperformed.Soundingmethodsandnon-destructivemethodsevaluatedifferentpartsofthestress–strainrange,sothesetwogroupsarecomple-mentary.

(c)Muchfasterfieldloadingtests,suchasthefalling

weightdeflection(FWD)testandmethodsbasedoncompactionmachinedynamics,willbecomepopularforreal-timefaston-sitecompactioncontrolofbackfill.Thistypeofloadingtestisneededtoimprovethecurrentcompactioncontrolbasedontheapparentdegreeofcompactionmeasuredatarelativelysmallnumberofpoints.

(d)Reliableandcost-effectivefieldinvestigationsinvery

deepoffshoresituationswillberequiredrelatedto

364SIMPSONANDTATSUOKA

naturalresourceexploration.InvestigationsinsituationsofveryhighorlowpressuresmayevenextendtoplanetsotherthantheEarth,includingtheMoonandMars.

Fieldmonitoring

Morecost-effective,accurate,reliable,robust(long-term)monitoringandmeasuringsystemswillregisternotonlyconventionalgeotechnicalparameters,butalsonewcompo-nents,suchaschemical,biologicalandnuclear.Opticalfibreswillbewidelyusedtomonitordisplacementandstrain,andsatellitephotographywillbecomemorereliableandpopulartomonitorgroundsurfacedisplacementsaccu-ratelyoverlargeareas.‘Smart’structuresmonitoredusingwirelesselectronicpick-upsduringconstructionandthroughthelifeoftheprojectwillbecomerealistic,monitoringbothgroundandstructures.Improvedmeasurementswillmakeobservationalmethodsmorereliableandpopular;itcouldbethateverypassivemember,suchasatie,nail,strutorgroundreinforcement,willreportitsstateofloadingandwarnofoverloads,allowingreductionsindesignfactorsofsafety.Thesedevelopmentsalsowillbeimportantinpre-ventinggeotechnicalfailuresrelatedtoearthquakes,land-slidesetc.

Sampling

Inthelast60yearstherehavebeenverysignificantadvancesinthequalityofsoilsamplingavailable.However,eventhebestsamplesarestilldisturbed,anditmaybeimpossibletoretainsubtlemicrostructure,accuratelyreflect-ingtheeffectsofageingorrecentstressorstrainhistory.Furtherimprovementsinsamplingwouldbeveryvaluable,buttheauthorsarenotawareofanylikelyfuturedevelop-mentsthatpromisemajorgains.

Laboratorytesting

Furtherdevelopmentsareexpectedinthefollowing(a)moreautomationinoperation,dataacquisitionand

controlofstressorstrain,orboth

(b)moreflexibilityincontrolofthestressandstrainpaths

(i.e.thethreeprincipalstressesandtheirdirection;porewaterandairpressures;andthethreeprincipalstrainratesandtheirdirections)aswellasloadinghistoriesintermsofstress,stain,strainrate(monotonic,sustained,cyclicandsoon)

(c)moreaccuratecontrolandmeasurementsofstressesand

strains(e.g.averagevaluesaswellaslocalvaluesinsideaspecimenaswellasinsideandoutsideshearbands)

(d)reducedcostintheproduction,maintenanceand

operationofthetestequipmentsothatthedevelop-mentsdescribedabovecanbeenjoyedinasmanylaboratoriesaspossible.Toachievetheabove,innovationsinbothhardwareandsoftware(relevanttestprogramme,testexecutionanddataanalysisandinterpretation)arenecessary.

Foracademics,itwillnecessarytoreviewthebasicassumptionsofconstitutivetheories,andthiswillbecomefeasibleaftermoreofthedevelopmentsdescribedabovearemade.Forengineeringpractice,onthepremisethatmean-ingfullyundisturbedsamplesbecomeavailableandsignifi-cantdevelopmentsaremadeinlaboratorytesting,betterdatawillbeavailablefromtestssimulatingtypicalfieldstressandstrainpathsandpre-loadinghistory(creepetc.).How-ever,tobepracticallyusefulandrepresentative,largeseries

oftestswillgenerallyberequired,andthetestingperiodwillprobablybetoolongfortypicaldesignprogrammes.Hencetheresultsofhigh-qualitytestseriescarriedoutbyuniversitiesforacademicpurposesorinrelationtoexcep-tional,largeprojectswillcontinuetobeimportanttoengineeringpractice.

Eventhoughnewfeaturesofmaterialbehaviourarestillbeingidentifiedinlaboratorytests,laboratorytestingofgeomaterialsisbecominglesspopularthannumericalanaly-sis.Thisrecenttrendisduetotheobviousapplicabilityoftheresultsofnumericalanalyses,whethertheyarerightorwrong,andtheirapparentcost-effectiveness.Torestoreabetterbalancebetweentestingandcomputing,itishopedthatthegeotechnicalcommunitywillstrivetoachieve(a)asignificantreductioninthecostoflaboratorytesting

ofgeomaterials

(b)thedevelopmentofdesignmethodsthatusemore

realisticsoilpropertiesthatcanbeobtainedreadilyfromlaboratorytests

(c)thepopularuseoftheseteststoreducethetotal

constructioncost(orthetotallifetimecost).

Physicalmodeltesting

Centrifugetestingisnowwellestablishedasameanstosimulateagivenprototypestressstate,anditsusewillcontinueasameansofstudyingmechanismsofbehaviour.Thetestingmethodhasdevelopedwithtimeintermsofdataaccuracy,modelscaleandapplicableloadinghistory(includ-ingstageconstruction,monotonicandcyclicloading).Furtherimprovementscanbeexpected,suchasbettermod-ellingofconstructionsequences,geotechnicalprocesses,andinclusionssuchasgeosyntheticsandpiles.However,itisnotcertainwhethercentrifugetestingwilleverbeabletotackleissuessuchasviscousbehaviourandageing,andissuesofparticlesizeremainproblematic.

Databases

Inmanylocations,especiallyurban,muchconstructioniscarriedoutinessentiallysimilargroundconditions.Sincegeotechnicalsiteinvestigationisconsideredexpensive,data-basesofexistinggroundinformation,publiclyaccessible,aredesirable.Generalacceptanceandtheinvolvementofpolicymakersareneeded,andtheprocessofdevelopingcompre-hensiveandreliabledatabaseswillprobablytakemanyyears.Furthermore,itwillneverend,becausecontinuousupdatingwillbeneededasnew,andhopefullybetter,databecomeavailable.

Thedataofbasiclaboratoryteststhatarehighlyrepeata-bleandreproducibleamongdifferentlaboratoriescouldreadilybeincludedinadatabase.Ontheotherhand,constructionofadatabaseofadvancedlaboratorytestswouldneedcarefulqualitycontrol,orverydiscerninguse.Theinformationcouldbestoredingeographicinformationsystems,whichcouldalsobeusedasastoreforreal-timemonitoringdata,probablywithrestrictedaccessinitially.Throughtheinternet,databasescouldeffectivelybelinked,makingverylargequantitiesofinformationavailabletoeveryengineer.Highlydevelopedcomputationalprocesseswillthenbeneededtofindrelevantdataforaparticularsituation,tocategorisetheirquality,andtointerpretthem.Fieldreconnaissance

Inadditiontotheiruseinderivinginsituparameters,geophysicalmethodssuchas3Dtomographyarealsorele-vant,andlikelytobeincreasinglyused,forsitereconnais-

GEOTECHNICS:THENEXT60YEARS

365

sancetoidentifystratification,bouldersandvoids.Theenormousvalueoffieldinspectionsiswellknowntogeolo-gistsandgeotechnicalengineers,butitisexpensive,espe-ciallyinglobalactivitieswheresitesmaybeveryremotefromtheexpert’sbase;atthelimit,thesitecouldevenbeonanotherplanet.Developmentsinelectronicsandcommu-nicationsarelikelytobeveryrapid,andfutureapplicationsofthesecouldbeimagined.Forexample,ageologicalrobotmightbedeveloped,deliveredtositeonalorry,submarineorspaceship.Itwouldbeabletoassembleandpropelitself,takesamplesandcarryoutfieldtestssuchasgeophysicalandpenetrationtests,providedetailedphotographsandmicrographs,analyserockjointinginexposures(perhapsbysendingaflyingprobeuptherockface),andsoon.Allthismightbecontrolledinteractivelyfromanofficeatgreatdistance,makingtop-qualityhumanexpertisereadilyavail-ableanywhereintheworldatacceptablecost.

DESIGNANDANALYSIS

Thegeotechnicaldesignprocessusuallyinvolvesassimila-tionofdata,areviewofcasehistoryexperience,codesofpracticeandempiricaldata,andsomecalculations,leadingincombinationtodesigndecisions.Thisbasicprocessisnotexpectedtochange,butfeaturesinwhichdevelopmentsmightbeexpectedarenotedbelow.

Numericalmodelling

Itislikelythatfiniteelementanalysiswillcontinuetobeused,bothforserviceabilitycomputationsandforstudiesoffailuremechanisms.Thismightlargelyreplacetheuseoflimitequilibriummethods,withadvantagesthatfeaturessuchasthreedimensions,timedependence,anisotropy,pro-gressiveandpost-peakbehaviourcouldbeincluded(e.g.Kovacevicetal.,2007).

Fordesignpurposes,numericalmodellingrequiresreliablesoilconstitutivemodels,reliabledataonstrataandsoilproperties,andadequatecomputationalpower.Atpresent,computationalpowerisoutstrippingsoilmodelling,withtheprospectofrelativelyeasyaccesstoverylarge3Danalyses.However,asdiscussedabove,thedevelopmentofsoilmod-elsismuchmoredifficult,andcontinuedresearchwillbevitaltopracticaluse.Intelligentapplicationofthelimitedcapabilitiesofavailablemodelswillbecriticallyimportant,andpossibilitiesofmisusemaybeanincreasingdangerassoftwarebecomesmoreaccessible.

ItisunlikelythatDEMwillbecomeapracticaltoolfortheanalysisofgeotechnicalconstruction,butitispossiblethatitcouldbeusedtoinvestigatesomesoilproblemsinvolvingsmalldetailsofbehaviour.Examplesmightincludetheper-formanceofaugersandotherformsofblade,orproblemsofsandinginoilwells,whereacombinationofreductioninporepressureandhighhydraulicgradientleadstocrushingofsandstoneandparticledisplacement(Lietal.,2006).Neuralnetworks

Greatercomputingpowerenablesengineerstocarryoutexistingmethodsofanalysismorequickly,andtoextendthem.Thepossibilityofcompletelynewmodesofanalysisandthought,whichcomputersmightmakeavailable,havebeenlittleexploredtodate,butcouldhaveabigimpactincomingdecades.Amongthesearetheuseofneuralnet-works,whichhavebeeninvestigatedasanewmeansofcapturingessentialfeaturesofsoilbehaviourtobeusedinanalysis.Toll(2001)reviewedtheuseofneuralnetworksingeotechnicalengineering,andreportedthatthemainusewasinclassificationandparameterassessmentandinfoundation

design.Recently,furtheruseofneuralnetworkshasbeenreportedinestimatingthedeflectionofdiaphragmwalls(Kungaetal.,2007)andtunnellingperformance(YooandKim,2007).Itisconceivablethattheseorsomesimilarcomputer-basedsystemsmightprovidesuperiorbrains,whichcanassimilatetheverycomplexdatacurrentlyavail-ableaboutsoilbehaviour,andusethemtoprovideusefulpredictions.Adisadvantagemightbethatthedegreeofunderstandingtransmittedtohumanengineersmightbereduced,which,regrettably,mightbeacommonfeatureoffuturepractice.

Statisticalmethodsandriskanalysis

Inrecentyears,thespecificidentificationofrisks,forexampleinformingriskregisters,hasbecomeaprominentpartofthedesignprocess.Havingacommonlanguageforrisk,withclearunderstandingbetweenclients,designersandconstructors,isvaluableanddeservesmoredevelopment.Itisalsodesirable,whererealisticallypossible,toquantifyrisk,inrelationbothtoeconomicissues,suchasdelaysincontracts,andtosafety,whichcouldrelatetothederivationoffactorsofsafetyincodesofpractice.Thenecessarybalanceingeotechnicsbetweentransparencyofprocess,clarityofdata,andthebestuseofexperienceandtraininghasbeendiscussedintextssuchasDegreesofBelief(Vick,2002)andinconferencessuchastheFirstInternationalSymposiumonGeotechnicalSafetyandRiskatTongjiUniversityin2007(e.g.Faber,2007).

Inthegeoenvironmentalfield,statisticalanalysisiscom-monpractice.However,forthedesignofconventionalgeotechnicalstructures,althoughstatisticalanalysescanprovidesomeusefulindications,mostresearchershavefoundthatthecomplexityofthegeotechnicaldesignprocessissuchthatitcannotbereducedtoacomputationalprocess,sohumanjudgementandexperience,thoughoftenlackingcompletetransparency,arevitalelements.Itisexpectedthatresearchinthisareawillcontinue,andwillinfluenceprac-tice.Withever-morepowerfulcomputers,databasesandlogicalalgorithms,itmaybethatriskswillbeanalysedwithgreaterrationalityandconfidencethanispossibleatpresent.Relatedtothis,andwithmajoradvancesinmonitoringsystems,moreuseoftheobservationalmethodcanbeexpected,usingreliabilityanalysistoensurethatsafetylevelsarenotdiminished.

Codesofpractice

Assessmentofgroundproperties,arguablythemostim-portantaspectofgeotechnicaldesign,isnoteasilyreducedtoacodeofpractice,sogeotechnicalcodestendtoactaschecklists,givingoverallguidanceaboutprocedurestogetherwithsomefactorsofsafety.Recentlysomeinternationalcodes,suchasEurocodes,haveattemptedtodefinetheprocessofderivingdesignvaluesofparametersinordertoprovideacceptablemarginsofsafetyandperformance.Atpresenttheproceduresrelyheavilyonhumanknowledgeandexpertise,butitcouldbethatthedevelopmentofinformationdatabases,togetherwithmajordevelopmentsinartificialintelligence,willallowmuchofthisprocesstobecarriedoutbycomputer.Whetherusedbyhumansor

computers,thepast60yearsofGe

´otechniqueandotherjournalsisavitalpartofthedatabase.

Thereremainsmuchtobedebatedabouttherelativeimportanceofserviceabilityandultimatelimitstatesingeotechnicaldesign,aboutwherepartialfactorsofsafetyshouldmostlogicallybeapplied(Paikowsky,2004;Schuppener,2007;Simpson,2007b),aboutthepartthatcanbeplayedbyprobabilityanalysis,andabouttheroleof

366SIMPSONANDTATSUOKA

performance-baseddesign(Honjo&Nagao,2007).Intheshorttermthereisadangerthat,amidstthisdebate,muchofthepracticalgoodsenseofexistingcodescouldbelost.Muchworkremainstobedonetoensurethataccumulatedknowledgeisusedsuccessfullywiththerelativelynewsafetyconceptsincurrentcodes.Inthelongerterm,itisreason-abletohopethatideasabouttheapplicationofsafetyfactorsandmarginswillcontinuetoconverge.Thiswillrequireasignificantcollaborationoftheresearchcommunityandpractice,andundergraduateteachingaboutthepurposesandmagnitudesofsafetymarginsindesignwillbeneededtoinformbothusersandfuturedevelopersofthecodes.

Asnotedearlier,civilengineeringuseslargeamountsofenergy,muchofitembodiedinthematerialsused.Economyindesignwillbeessential,affectedbythemagnitudesoffactorsofsafety,amongotherfactors.Societywillthereforeneedcodesofpracticetoadopttheminimumacceptablefactorsofsafety,whichcouldleadtoprogressiverefinementofthecodes.DISSEMINATION

Untilrecentyears,technologicalunderstandinghasbeentransmittedmainlyinthreeways:throughthewrittenwordonpaper,vialecturesinteachingandconferences,and‘on

thejob’asknowledgeispassedbetweencolleagues.Ge´o-techniquehasbeenaleadingorganofthefirstofthesemethods,andengineershavereliedheavilyonjournalsandtextbooks.Morerecently,computer-basedknowledgehasbecomeprominent,especiallyfromtheinternet.Papersfromjournalscanoftenbeobtainedfromtheinternet,althoughthisisnotyetgenerallytrueofconferenceproceedingsandtextbooks.YoungengineerssearchingforinformationarelikelytoappealfirsttoGoogleorWikipedia,andthentopapersonline,beforefinallyresortingtopaperpublicationsifnecessary.Commercialcompaniesseeasavinginthis,becausestoragespacefordocumentscanbereduced.Issuesofcopyrightondownloadeddocumentsaddanunfortunatecomplicationforbothpublishersandusers.On-lineforumsareactive,andmaybecomeincreasinglyinfluential;geotech-nicalengineershavetraditionallybeengenerousinsharingtheirknowledgeandinformation.

Peer-reviewedjournalssuchasGe

´otechniqueplayanimportantroleinprovidingreaderswithinformationthathasbeenthoroughlyvettedandsoislikelytobereliable.Thejournalsarealsoimportantinprovidingacontrolledoutletforacademicpublications,whichmeasuretheachievementsofresearchersandsoenablethemtoobtainfundingforfurtherwork.Itisimportantthatthesetworolescontinueinthefuture,althoughthisdoesnotnecessarilyrequirepublica-tiononpaper;similarpeerreviewcouldbeappliedtopaperspublishedmainly,oronly,ontheinternet,anditislikelythatdevelopmentwillproceedinthisdirection.Somemeansofguaranteeingthelongevityofthepublicationswillbeneeded.Internetjournalswillbesomewhatdifferent,con-tainingdirectlinkstootherdocumentsanddata,andperhapsinvitingdirectcommunicationwiththeauthors.

JournalswithaninternationalreadershiparepublishedmainlyinEnglish,butdifferencesoflanguageprobablysupportthesuccessofarangeofjournalsinvariouslanguagesdevotedtothesamesubject.Thiscanbefrustrat-ingforbothauthorsandreaders,impedingthespreadofideas.Itislikelythatonelanguagewillbecomeevenmoreubiquitousinthecomingdecades,anditisalsopossiblethatcomputerisedtranslationwillbecomesopowerfulthatread-erscanobtainajournalinanylanguagetheychoose.Thismightleadtoareductioninthenumberofjournals,butwouldenhancethetransferoftechnology.

Apartfrompublication,humaninteractionisimportanttodissemination.Inordertoidentifyreliablementors,students

andusersofinformationneedsomepersonalconnectiontothem,solecturesandconferencesarelikelytoremainimportant.However,itcouldbethattravel,especiallyinter-nationally,willbecomemoreexpensive,andvariousformsofvideoconferencingmaytakeprecedence.Atpresentthisisoftenunreliableandimpersonal,butitcanbeexpectedthatveryrapidinteraction,stimulatingpersonalinterchange,willbeavailableinthenearfuture,greatlyreducingtheneedfortravel.Nodoubtsuchadevelopmentwillbeconsideredbothconvenientanddisappointing.

CONCLUDINGREMARKS

Thefutureofgeotechnicalconstructionislikelytobeveryactive,involvingtheapplicationofcurrentlyacceptedprocessesandmanydevelopmentsaimedatreducingenergyconsumptionandcarbondioxideemissions.Thesecon-straintsapplybothtoconstructionprocesses,requiringtheminimisationofembodiedenergy,andtotheprovisionofconstructionsthatwillhelpsocietyuselessenergy,orgener-atemoreenergyfromnon-carbonsources.Geotechnicalengineerswillembraceexpertiserelatedtoheattransferintheground,withimportanthydrogeologicalconnections.Engineeringofdeeprepositoriesfornuclearwastewillinvolvegroundmaterialsathighstresseswithchangingtemperaturesanddegreesofsaturation,andconsiderationofthemovementofradionuclidesintheground.

Moreresourcefuluseoffillmaterialsisenvisaged,withgroundimprovementandgeosyntheticsplayingimportantroles.Thebehaviourofsoilisincreasinglyunderstoodtobeverycomplex,andcontinuedresearchintothiswillbenecessary.However,bringingtheresearchintopracticalapplicationremainsverychallenging,andislikelytobesoformanyyearshence.Experienceandempiricismwillcontinuetobeessentialtogeotechnicaldesign.

Furtherrapiddevelopmentofelectronicsandcommunica-tionsisexpectedtofacilitatemajoradvancesinlaboratoryandfieldequipment,monitoringandobservationalap-proaches,andthepossibilityofremotesitereconnaissancehasbeensuggested.

Designprocesseswillbecomemoreheavilyreliantoncomputersasdatasourcesandcalculators.Itisnotcleartowhatextentartificialintelligenceandcomputerisedprocessesofriskanalysismightreplacetheexpertiseofthehumanengineer.Thereisadangerthatengineerswillbecomedeskilled,withnoadequatereplacement.

ThefutureofjournalssuchasGe

´otechniqueisconsideredtobeveryimportantasacontrolonthequalityofpublishedinformation,whichalsohelpstoregulatethefundingofresearchandthecareersofresearchers.However,thenatureofjournalscouldchangeconsiderablyastheybecomemainly,ifnotentirely,electronicinnature.

TheauthorswouldliketowishGe

´otechnique,andthewholegeotechnicalcommunity,averysuccessfulnext60years.ACKNOWLEDGEMENTS

Theauthorswouldliketothankthemanycolleagueswhohaveprovidedsuggestionsforthispaper,bycompletingthequestionnaireorbyothermeans.TheyaregratefultoProfes-sorChrisClaytonandDrJeffreyPriestforassistancewithtextongashydrates,andtoGeraldineCheungandMartinFairlie,whoassistedwiththepreparationofsomesections.REFERENCES

Admiraal,J.B.M.(2006).Abottom-upapproachtotheplanningofundergroundspace.TunnellingandUndergroudSpaceTech.21,Nos3–4,464–465.

GEOTECHNICS:THENEXT60YEARS

367

Aqil,U.,Tatsuoka,F.,Uchimura,T.,Lohani,T.N.,Tomita,Y.&Matsushima,K.(2005).Strengthanddeformationcharacteristicsofrecycledconcreteaggregateasabackfillmaterial.SoilsFound.45,No.4,53–72.

Ashi,J.(1999)Largesubmarine-landslidesassociatedwithdecom-positionofgashydrate.LandslideNews,12,No.12,17–20.Berndt,C.,Mienert,J.,Vanneste,M.,Bu¨nz,S.&Bryn,P.(2002).Submarineslope-failureoffshoreNorwaytriggersrapidgashydratedecomposition.Proc.4thInt.Conf.onGasHydrates,Yokohama,71–74.

Bernier,F.,Li,X.-L.&Bastiaens,W.(2007).Twenty-fiveyears’geotechnicalobservationandtestingintheTertiaryBoomClay

formation.Ge

´otechnique57,No.2,229–237.Bily,C.&Dick,J.W.L.(1974).NaturaloccurringgashydratesintheMackenziedelta,NorthwestTerritories.Bull.Can.Pet.Geol.22,No.3,340–352.

Brandl,H.(2006).Energyfoundationsandotherthermo-active

groundstructures.Ge

´otechnique56,No.2,81–122.Chapman,T.,Butcher,T.&Fernie,R.(2004).Re-usingurbanfoundations.Proc.Inst.Civ.Engrs,Civ.Engng157,No.1,6.

Chau,C.,Nicholson,D.&Soga,K.(2006).Comparisonofembodiedenergyoffourdifferentretainingwallsystems.Proc.Int.Conf.ReuseFound.forUrbanSites(RuFus2006),277–285.Cheng,Y.P.,Bolton,M.D.&Nakata,Y.(2004).Crushingand

plasticdeformationofsoilssimulatedusingDEM.Ge

´otechnique54,No.2,131–141.

Chow,B.(2006).Double-O-tubeshieldtunnelingtechnologyintheShanghaiRailTransitProject.TunnellingandUndergroundSpaceTechnology21,No.6,594–601.

Clayton,C.R.I.,Priest,J.A.&Best,A.I.(2005).Theeffectsofdisseminatedmethanehydrateonthedynamicstiffnessand

dampingofasand.Ge

´otechnique,55,No.6,423–434.Cundall,P.A.(2001).Adiscontinuousfuturefornumericalmodel-lingingeomechanics?Proc.Inst.Civ.Engrs,Geotech.Engng149,No.1,41–47.

Cui,L.,O’Sullivan,C.O.&O’NeillS.(2007).Ananalysisofthetriaxialapparatususingamixedboundarythree-dimensional

discreteelementmodel.Ge

´otechnique57,No.10,831–844.Delage,P.,Le,T.-T.,Tang,A.-M.,Cui,Y.-J.&Li,X.-L.(2007).

SuctioneffectsindeepBoomClayblocksamples.Ge

´otechnique57,No.2,239–244.

DepartmentofTradeandIndustry(2003).Ourenergyfuture:Creatingalowcarboneconomy.TheStationeryOffice.

Duncan,J.M.&Chang,C.Y.(1970).Nonlinearanalysisofstressandstraininsoils.J.SoilMech.Found.Div.ASCE96,No.SM5,1629–1653.

EDF(2007).TheRancetidalpowerplant,powerfromtheocean.http://www.edf.fr/html/en/decouvertes/voyage/usine/usine.htmlElShamy,U.&Zeghal,M.(2005).Coupledcontinuum-discretemodelforsaturatedgranularsoil.J.EngngMech.ASCE131,No.4,413–426.

Faber,M.H.(2007).Assessingandmanagingrisksduetonaturalhazards.Proc.1stInt.Symp.onGeotechnicalSafetyandRisk,TongjiUniversity,1,53–70.

Finno,R.J.,Harris,W.W.,Mooney,M.A.&Viggiani,G.(1997).

Shearbandsinplanestraincompressionofloosesand.Ge´otech-nique47,No.1,149–165.

Franklin,L.J.(1980).Insituhydrates:apotentialgassource.PetroleumEngineerInternational,November,112–122.

Gens,A.,Vaunat,J.,Garitte,B.&Wileveau,Y.(2007).Insitubehaviourofastifflayeredclaysubjecttothermalloading:

observationsandinterpretation.Ge

´otechnique57,No.2,207–228.

Haq,B.(1998).Naturalgashydrates:searchingforthelong-termclimaticandslopestabilityrecords.InGashydrates:Relevancetoworldmarginstabilityandclimatechange(edsJ.-P.HenrietandJ.Mienert),SpecialPublication137,pp.303–318.London:GeologicalSociety.

Henkel,D.J.(1982).22ndRankineLecture:Geology,geomorphol-ogyandgeotechnics.Ge

´otechnique32,No.3,175–194.Hight,D.W.,Gasparre,A.,Nishimura,S.,Minh,N.A.,Jardine,R.J.&Coop,M.R.(2007).CharacteristicsoftheLondonClay

fromtheTerminal5siteatHeathrowAirport.Ge

´otechnique57,No.1,3–18.

Hirosue,T.&Kagami,S.(2006).Recentchallengesinunderground

projectsinJapan.InNorthAmericantunneling(ed.L.Ozde-mir).London:Taylor&Francis,265–274.

Hofinger,H.&Adam,D.(2007).Tunnelsasenergysources:practicalapplicationsinAustria.Proc.14thEur.Conf.SoilMech.Geotech.Engng,Madrid,907–912.

Honjo,Y.&Nagao,T.(2007).Developmentofabasicspecificdesigncodeonperformancebasedspecificationconcept:TheTechnicalStandardsforPortandHarborFacilities.Proc.1stInt.Symp.onGeotechnicalSafetyandRisk,TongjiUniversity,1,105–116.

Houlsby,G.T.&Byrne,B.W.(2005).Designproceduresforinstallationofsuctioncaissonsinclayandothermaterials.Proc.Inst.CivilEngrsGeotech.Engng158,No.2,75–82.

IntergovernmentalPanelonClimateChange(2007).Intergovern-mentalPanelonClimateChange:FourthAssessmentReports.Cambridge:CambridgeUniversityPress.

Jardine,R.J.,Potts,D.M.,Fourie,A.B.&Burland,J.B.(1986).Studiesoftheinfluenceofnon-linearstress–straincharacter-isticsinsoil–structureinteraction.Ge

´otechnique36,No.3,377–396.

Kayen,R.E.&Lee,H.J.(1991).Pleistoceneslopeinstabilityofgashydrate-ladensedimentontheBeaufortseamargin.MarineGeotech.10,Nos1–2,125–141.

Koseki,J.,Tatsuoka,F.,Munaf,Y.,Tateyama,M.&Kojima,K.(1998).Amodifiedproceduretoevaluateactiveearthpressureathighseismicloads.SoilsFound.,Specialissueongeotechni-calaspectsoftheJanuary17,1995Hyogoken-NambuEarth-quake,No.2,209–216.

Koseki,J.,Tateyama,M.,Watanabe,K.&Nakajima,S.(2008).Keynotelecture:Stabilityofearthstructuresagainsthighseis-micloads.Proc.13thAsianRegionalConf.SoilMech.Geotech.Engng,Kolkata2.

Kovacevic,N.,Hight,D.W.&Potts,D.M.(2007).Predictingthestand-uptimeoftemporaryLondonClayslopesatTerminal5,

HeathrowAirport.Ge

´otechnique57,No.1,33–47.Kunga,G.T.C.,Hsiaob,E.C.L.,Schusterb,M.&Juang,C.H.(2007).Aneuralnetworkapproachtoestimatingdeflectionofdiaphragmwallscausedbyexcavationinclays.Comput.Geo-tech.34,No.5,385–396.

Kvenvolden,K.(1988).Methanehydrate:amajorreservoirofcarbonintheshallowgeosphere?Chem.Geol.,71,Nos1–3,41–51.

Kvenvolden,K.(1998).Aprimeronthegeologicaloccurrenceofgashydrates.InGashydrates:Relevancetoworldmarginstabilityandclimatechange(edsJ.-P.HenrietandJ.Mienert),SpecialPublication137,pp.9–30.London:GeologicalSociety.Law,R.&Nicholson,D.P.(2006).ModellingofthechalkaquiferincentralLondonforaproposedopencoolingsystem.Proc.10thInt.Conf.onThermalEnergyStorage,StocktonCollege,NewJersey,paper11.

Leshchinsky,D.(2000).Designdilemma:usepeakorresidualstrengthofsoil.GeotextilesandGeomembranes,19,No.2,111–125.

Li,L.,Papamichos,E.&Cerasi,P.(2006).InvestigationofsandproductionmechanismsusingDEMwithfluidflow.ProceedingsofEUROCK2006:MultiphysicsCouplingandLongTermBe-haviourinRockMechanics(edsA.VanCotthem,R.Charlier,J.-F.ThimusandJ.-P.Tshibangu),pp.241–247.London:Taylor&Francis.

McDonald,G.(1990).Thefutureofmethanegasasanenergyresource.Ann.Rev.Energy15,53–83.

McDowell,G.R.&Harireche,O.(2002).Discreteelement

modellingofsoilparticlefracture.Ge

´otechnique52,No.2,131–135.

Meinert,J.,Posewang,J.&Baumann,M.(1998).GashydratesalongthenortheasternAtlanticmargin:possiblehydrate-boundmargininstabilitiesandpossiblereleaseofmethane.InGashydrates:Relevancetoworldmarginstabilityandclimatechange(edsJ.-P.HenrietandJ.Mienert),SpecialPublication137,pp.275–291.London:GeologicalSociety.

Okuyama,Y.,Yoshida,T.,Tatsuoka,F.,Koseki,J.,Uchimura,T.,Sato,N.&Oie,M.(2003).Shearbandingcharacteristicsofgranularmaterialsandparticlesizeeffectsontheseismicstabilityofearthstructures.Proc.3rdInt.Symp.onDeformationCharacteristicsofGeomaterials,Lyon,607–616.

O’Riordan,N.J.(2007).Keynotepaper:Technicalsustainabilityof

368SIMPSONANDTATSUOKA

constructiononverysoftground.Proceedingsoftheconference

onsoftgroundengineering,Portlaoise.

Paikowsky,S.G.(2004).Loadandresistancefactordesignfordeepfoundations,NCHRPReport507.Washington,DC:Transporta-tionResearchBoard.

Piriyakul,K.&Haegeman,W.(2007).Voidratiofunctionforelastic

shearmoduliforBoomClay.Ge

´otechnique57,No.2,245–248.Popenoe,P.,Schmuck,E.&Dillon,W.(1993).Thecapefearlandslide:slopefailureassociatedwithsaltdiapirismandgashydratedecomposition.InSubmarinelandslides:Selectivestud-iesintheUSexclusiveeconomiczone,USGeologicalSurveyBulletin2002,pp.40–53.Reston,VA:USGeologicalSurvey.Priest,J.A.,Best,A.I.&Clayton,C.R.I.(2005).Alaboratoryinvestigationintotheseismicvelocitiesofmethanegashydrate-bearingsand.J.Geophys.Res.SolidEarth,110,No.B4,paperB04102(doi:10.1029/2004JB003259).

RailwayTechnicalResearchInstitute(1999).Seismicdesignstan-dardforrailwaystructures,pp.47and89–90.Tokyo:Maruzen(inJapanese).

RailwayTechnicalResearchInstitute(2007).Designstandardforrailwayearthstructures,p.257.Tokyo:Maruzen(inJapanese).Roscoe,K.H.&Burland,J.B.(1968).Onthegeneralisedstress–strainbehaviourof‘wet’clay.Engineeringplasticity(edsJ.HeymannandF.A.Leckie),pp.535–609.Cambridge:Cam-bridgeUniversityPress.

Schuppener,B.(2007).Eurocode7anditslatestdevelopments.Proc.1stInt.Symp.onGeotechnicalSafetyandRisk,TongjiUniversity,1,117–132.

Siddiquee,M.S.A.,Tanaka,T.,Tatsuoka,F.,Tani,K.&Morimoto,T.(1999).Numericalsimulationofthebearingcapacityofstripfootingonsand.SoilsFound.39,No.4,93–109.

Simpson,B.(1992).32ndRankineLecture:Retainingstructures:

displacementanddesign.Ge

´otechnique42,No.4,539–576.Simpson,B.(2007a).Useofundergroundspaceinurbanareas.Proc.14thEur.Conf.SoilMech.Found.Engng,Madrid,5.

Simpson,B.(2007b).ApproachestoULSdesign:themeritsofDesignApproach1inEurocode7.Proc.1stInt.Symp.onGeotechnicalSafetyandRisk,TongjiUniversity,1,527–538.Simpson,B.(2008).Keynotelecture:Engineeringinstiffsedimen-taryclays.StiffSedimentaryClays:GenesisandEngineeringBehaviour.London:ThomasTelford(forthcoming).

Sloan,E.D.Jr(1998).Clathratehydratesofnaturalgases.NewYork:MarcelDekker.

Soga,K.,Lee,S.L.,Ng,M.Y.A.&Klar,A.(2007).Characterisa-tionandengineeringpropertiesofmethanehydratesoils.InCharacterisationandengineeringpropertiesofnaturalsoils(edsT.S.Tan,K.K.Phoon,D.W.Hight,andS.Leroueil),Vol.4,pp.2591–2644.London:Taylor&Francis.

SustainableDevelopmentCommission(2007).Turningthetide:TidalpowerintheUK.London:SustainableDevelopmentCommission.

Tatsuoka,F.,Okahara,M.,Tanaka,T.,Tani,K.,Morimoto,T.&Siddiquee,M.S.A.(1991).Progressivefailureandparticlesizeeffectinbearingcapacityofafootingonsand.Proc.ASCEGeotech.EngineeringCongress,Boulder.ASCEGeotechnicalSpecialPublication,Vol.27,pp.788–802.

Tatsuoka,F.,Goto,S.,Tanaka,T.,Tani,K.,&Kimura,Y.(1997).Particlesizeeffectsonparticlesizeeffectsonbearingcapacityoffootingongranularmaterial.ProceedingsoftheInternationalconferenceondeformationandprogressivefailureingeomecha-nics,ISNagoya’97(edsA.Asaoka,T.AdachiandF.Oka),pp.133–138.Oxford:PergamonPress.

Tatsuoka,F.,Koseki,J.,Tateyma,M.,Munaf,Y.&Horii,N.(1998).Keynotelecture:Seismicstabilityagainsthighseismicloadsofgeosynthetic-reinforcedsoilretainingstructures.Proc.6thInt.Conf.onGeosynthetics,Atlanta1,103–142.

Tatsuoka,F.,Hirawaka,D.,Nojiri,M.,Aizawah,H.,Tateyama,M.&Watanabe,K.A.(2007).Anewtypeintegralbridgecompris-ingofgeosynthetic-reinforcedsoilwalls.Proc.5thInt.Symp.onEarthReinforcement(ISKyushu),803–809.

Thornton,C.(2000).Numericalsimulationsofdeviatoric

sheardeformationofgranularmedia.Ge

´otechnique50,No.1,43–53.

Toll,D.G.(2001).Computersandgeotechnicalengineering:areview.InCivilandstructuralengineeringcomputing:2001(ed.B.H.V.Topping),pp.433–458.Stirling:Saxe-CoburgPublica-tions.

Vick,S.(2002).Degreesofbelief:Subjectiveprobabilityandengineeringjudgment.Reston,VA:ASCE.

Ward,L.(2008).WhyTreasureIslandisthesuper-greencityofthefuture.PopularMechanics185,No.1.

Yoo,C.&Kim,J.(2007).TunnelingperformancepredictionusinganintegratedGISandneuralnetwork.Comput.Geotech.34,No.1,19–30.

Zhang,L.&Thornton,C.(2007).Anumericalexaminationofthe

directsheartest.Ge

´otechnique57,No.4,343–354.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top