青春飞扬暑假特训班整理
最大公约数与最小公倍数应用(一)
一、知识要点:
1、性质1:如果a、b两数的最大公约数为d,则a=md,b=nd,并且(m,n)=1。 例如:(24,)=6,24=4×6,=9×6,(4,9)=1。
2、性质2:两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积。
a与b的最小公倍数[a,b]是a与b的所有倍数的最大公约数,并且a×b=[a,b]×(a,b)。 例如:(18,12)= ,[18,12]= (18,12)×[18,12]= 3、两个数的公约数一定是这两个数的最大公约数的约数。 3、辗转相除法
二、热点考题:
例1 两个自然数的最大公约数是6,最小公倍数是72。已知其中一个自然数是18,求另一个自然数。(运用性质2)
练一练:甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数。
例2 两个自然数的最大公约数是7,最小公倍数是210。这两个自然数的和是77,求这两个自然数。 分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数是30。这两个自然数的和是11,求这两个自然数。”
例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。 分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。再由[a,b,c]=120知, a只能是60或120。[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。
练一练:已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少? 例4已知两个自然数的和是50,它们的最大公约数是5,求这两个自然数。 例5 已知两个自然数的积为240,最小公倍数为60,求这两个数。 习 题 四
1.已知某数与24的最大公约数为4,最小公倍数为168,求此数。
2.已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数。
3.已知两个自然数的和为165,它们的最大公约数为15,求这两个数。
4.已知两个自然数的差为48,它们的最小公倍数为60,求这两个数。
—青春飞扬暑假特训班
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo2.com 版权所有 湘ICP备2023021991号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务