江西师范大学硕士研究生入学考试初试科目
考 试 大 纲
科目代码、名称: 847高等代数
070101基础数学、070102计算数学、070103概率论与数理统计、070104应用
适用专业: 数学、070105运筹学与控制论、071400统计学 一、考试形式与试卷结构
(一)试卷满分 及 考试时间
本试卷满分为150分,考试时间为180分钟。 (二)答题方式 答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上。 (三)试卷题型结构
填空题:8小题,每小题6分,共48分 解答题:6小题,每小题17分,共102分 二、考查目标(复习要求)
全日制攻读硕士学位研究生入学考试高等代数科目考试内容包括高等代数等1门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,并能运用相关理论和方法分析、解决**中的实际问题。 三、考查范围或考试内容概要
第一章 多项式
§1.数域。 §2.一元多项式。 §3.整除的概念。 §4.最大公因式。 §5.因式分解定理。 §6.重因式。 §7.多项式函数。
§8.复系数与实系数多项式的因式分解。 §9.有理系数多项式。 §10.多元多项式。 §11.对称多项式。
第二章 行列式
§1.引言。 §2.排列。 §3.n级行列式。 §4.n级行列式的性质。 §5.行列式的计算。
§6.行列式按一行(列)展开。 §7.克拉姆(Cramer)法则。
§8.拉普拉斯(Laplace)定理、行列式的乘法规则。
第三章 线性方程组
§1.消元法。 §2.n维向量空间。 §3.线性相关性。 §4.矩阵的秩。
§5.线性方程组有解判别定理。 §6.线性方程组解的结构。
第四章 矩阵
§1.矩阵概念的一些背景。 §2.矩阵的运算。
§3.矩阵乘积的行列式与秩。 §4.矩阵的逆。 §5.矩阵的分块。 §6.初等矩阵。
§7.分块乘法的初等变换及应用举例。
第五章 二次型
§1.二次型及其矩阵表示。 §2.标准形。 §3.唯一性。 §4.正定二次型。
第六章 线性空间
§1.集合 映射。
§2.线性空间的定义与简单性质。 §3.维数,基与坐标。 §4.基变换与坐标变换。 §5.线性子空间。 §6.子空间的交与和。 §7.子空间的直和。 §8.线性空间的同构。
第七章 线性变换
§1.线性变换的定义。 §2.线性变换的运算。 §3.线性变换的矩阵。 §4.特征值与特征向量。 §5.对角矩阵。
§6.线性变换的值域与核。 §7.不变子空间。
§8.若尔当(Jordan)标准形介绍。 §9.最小多项式。
第八章 -矩阵
§1.-矩阵。
§2.-矩阵在初等变换下的标准形。 §3.不变因子。 §4.矩阵相似的条件。 §5.初等因子。
§6.若尔当(Jordan)标准形的理论推导。 §7.矩阵的有理标准形。
第九章 欧几里德空间
§1.定义与基本概念。 §2.标准正交基。 §3.同构。 §4.正交变换。 §5.子空间。
§6.实对称矩阵的标准形。
§7.向量到子空间的距离,最小二乘法。 §8.酉空间介绍。
第十章 双线性函数与辛空间
§1.线性函数。 §2.对偶空间。 §3.双线性函数。 §4.辛空间。
参考教材或主要参考书:
1.高等代数,北京大学数学系几何与代数教研室前代数小组编(第三版),高等教育出版社(2003
年7月第3版)。
四、样卷
江西师范大学硕士研究生入学考试试题
一、填空题(每小题6分,共48分) 1、 x36x215x14的有理根为______________.
12、 若非退化矩阵A的每行元素之和均为a,则A的每行元素之和必为_____________. 3、 设
(1,1,a,1),1(1,1,1,1),2(1,1,1,1),3(1,1,1,1),则当a___________,可由
1,2,3线性表出.
0x4、 行列式
yzx0zyyz0xzyx0的值为________________.
2111005、 己知A121,B0a0,且A与B相似,则a___________. 1120046、 实二次型
f(x1,x2,,xn)为半正定的充要条件是它的矩阵的特征值___________..
P上三维线性空间,
7、 设V是数域
1,2,3为V的一组基,其对偶基记为
f1,f2,f3,则V中基
123,23,3的对偶基为____________(用f1,f2,f3表出) .
8、 设n级方阵A,B满足A+B=AB,则(A-E)-1=_____________. 二、(17分)证明:对任意非负整数m,n,p,总有
x2x1x3mx3n1x3p2
nn三、(17分) 设A是数域P上n级阵,记N(A)xPAx0,C(A)AxxP
证明:PC(A)N(A)秩A秩A
四、(17分) 求正交矩阵T,使TAT为对角矩阵,其中
n2
122
A2122212
五、(17分) 设A为nn矩阵,证明:A
六、(17分) 证明:n维线性空间V的任何一个不等于V的真子空间都是V的若干个n1维子空间的交.
七、(17分) 设A是一个n级方阵,l0是A的一个单特征根,X0是A的属于特征根l0的特征向量,证明:n元线性方
程组(l0E-A)X=X0无解.
A秩A+秩(AE)n.
因篇幅问题不能全部显示,请点此查看更多更全内容