人教版五年级下册数学第六单元
1、众数:
一组数据中出现次数最多的数,就是这组数据的众数。
众数能够反映一组数据的集中情况。它一定是这组数据中的某一个数。
2、在一组数据中,众数可能不止一个,也可能没有众数。
3、平均数、中位数和众数的联系与区别:
① 平均数:
一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
容易受极端数据的影响,表示一组数据的平均情况(平均水平)。
② 中位数:
将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。
它不受极端数据的影响,表示一组数据的一般情况(中等水平)。
③ 众数:
在一组数据中出现次数最多的数叫做这组数据的众数。
它不受极端数据的影响,表示一组数据的集中情况(多数水平)。
1、复式折线统计图
① 画图时注意:一、描点 二、连线 三、标数据
② 要用不同形式的线段(一般用实线和虚线,条件允许的话用不同颜色的线)分别连接两组数据中的数。
北师大五年级下册数学第六单元
根据方向和距离确定物体位置的方法:
(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上。
(2)用直尺测量两点之间的图上距离。
例如:下面是一个平面图:
①以学校为观测点,丁丁家的位置
是 西 偏 北45°,距离学校1800米。
②以学校为观测点,青青家的位置
是 东 偏 北26°,距离学校1500米。
确定位置(一)知识点
1、 认识方向与距离对确定位置的作用。
2、 能根据方向和距离确定物体的位置。
3、 能描述简单的路线图。
确定位置(二)知识点
了解确定物体位置的方法。
能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离)
1数对:一般由两个数组成。 作用:数对可以表示物体的位置,也可以确定物体的位置。
2行和列的意义:竖排叫做列,横排叫做行。
3数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)
(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
4两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6图形平移变化规律:
(1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。
(2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。
苏教版五年级下册数学第六单元
1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)
5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。
7、正方形里最大的圆。两者联系:边长=直径
画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。两者联系:宽=直径
画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
9、同一个圆内的所有线段中,圆的直径是最长的。
10、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长×转数
11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母π(读pài)表示。π是一个无限不循环小数。π=3.141592653……
我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14
12、如果用C表示圆的周长,那么C=πd或C = 2πr
13、求圆的半径或直径的方法:d = C圆÷π r= C圆÷ π÷2= C圆÷2π
14、半圆的周长等于圆周长的一半加一条直径。 C半圆= πr+2r C半圆= πd÷2+d
15、常用的3.14的倍数:
3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84
3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96
3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5
3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34
16、圆的面积公式:S圆=πr2。圆的面积是半径平方的π倍。
17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=2(C)=πr)。即:S长方形= a × b
S圆 = πr × r= πr2
注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2πr+2r=C圆+d
18、半圆的面积是圆面积的一半。S半圆=πr2÷2
19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
面积的倍数=半径的倍数2
20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=πR2-πr2=π(R2-r2)
22、常用的平方数:112=121 122=144 132=169 142=196 152=225
162=256 172=289 182=324 192=361 202=400
因篇幅问题不能全部显示,请点此查看更多更全内容