振动与冲击 V01.35 No.10 2016 第35卷第1O期 JOURNAL OF VIBRATION AND SHOCK 大型风力发电机组弹性元件隔振性能分析和试验研究 晏红文 ,田红旗 ,欧阳华 ,吕杏梅 ,杨兆忠 ,李晓光 (1.中南大学交通运输工程学院,长沙410075;2中国中车株洲电力机车研究所有限公司风电事业部,湖南株洲412001) 摘 要:针对兆瓦级风力发电机组传动链的复杂性,经过简化,分别建立齿轮箱、弹性元件和机架为系统的单自由 度和两自由度振动模型,并根据风机传动链结构的特点,对齿轮箱和弹性元件系统的固有频率和刚度等参数以及传动链 结构尺寸和这些参数的相互影响的关系进行分析和研究,提出适合于风机传动链中齿轮箱弹性元件相关参数的基本设计 方法;并以齿轮箱为对象在现场进行振动测试,根据齿轮箱结构特点和对应测试数据的相关性两方面对试验结果的合理 性进行了详细分析。根据测试结果再分析弹性元件振动特性和隔振效果,验证弹性元件和传动链结构的合理性,为风机 设计提供参考。 关键词:风力发电机组;弹性元件;隔振;齿轮箱;振动试验 中图分类号:TH1 13 文献标志码:A DOI:10.13465/j.cnki.jVS.2016.10.034 Vibration isolation performance analysis of the elastic element of large-scale wind turbine and its experimental study YAN Hong—wen ’ ,TIAN Hong—qi ,OUYANG Hua ,Lt)Xing—mei ,YANG Zhao—zhong2,LI Xiao—guang (1.School of Trafifc&Transportation Engineering,Central South University,Changsha 410075,China; 2.Wind Power Business Unit,CRRC Zhuzhou Electric Locomotive Research Institute Co.,L cd.,Zhuzhou 421000,China) Abstract: Considering the complexity of MW wind turbine drive chain,with simplification,the vibration models of single degree of freedom and two degrees of freedom were established respectively for the gear box,elastic element and frame of the drive train.Through analysis on the structural characteristics of the wind turbine drive chain,and the mutual influences between the dimension of stuctrure and the characteristics of gearbox system,a design method suitable for the elastic element of wind turbine gearbox transmission chain with proper parameters was put forward.The test data of gear box vibration tests at the site were confirmed in accordance with the stuctrural features of the gearbox and the correlation between the related test data.The vibration characteristics and the effect of vibration isolation of the elastic element were analyzed and the reasonability of the elastic element and the drive chain stuctrure was veriifed.The method could be a reference to the design of wind turbines. Key words:wind turbine;flexible element;vibration isolation;gearbox;vibration test 近年来我国风电行业发展迅猛,每年的装机容量 超过千万千瓦¨j,单机容量超过1.5 MW的大型机组 为主流机型。大型风力发电机组的传动链一般由叶 片、轮毂、主轴及主轴承、齿轮箱及弹性元件、联轴器、 发电机组成,其结构复杂而且尺寸较长(见图i);大型 机组决定其承受载荷很大,而且风力载荷作为输入的 外载荷,其风向、风速不稳定,载荷变化的随机性也较 大;再加上不同的工况机组又采取不同的控制策略;这 些因素决定了机组为变转速运行 j,在运行过程中必 收稿日期:2015—02—04修改稿收到日期:2015—06-07 1.叶片性元件2.轮毂3.主轴承4.主轴5.齿轮箱及弹 6.联轴器7.发电机 图1传动链基本结构 Fig.1 Drive train structure 然产生振动现象。传动链中的关键部件齿轮箱为高传 第一作者晏红文男,教授级高级工程师,1968年生 E-mail:yanhw@csrzic.corn 动比的多级行星齿轮箱传动,发电机的转子除高速旋 转外,与定子间还产生较大的相互作用的电磁力,这两 第10期 晏红文等:大型风力发电机组弹性元件隔振性能分析和试验研究 2l3 个大部件的振动往往最为剧烈,对整个风机稳定运行 和安全性影响较大。在风机设计中,一般会考虑通过 其中贝lJ系统的固有频率为 A=to,频率比 ,相对阻尼比 安装弹性元件来减小或者隔离这些有害振动,避免发 临界阻尼系数c =2 m=2 生传动链系统共振这种最危险的现象,以提高风机的 使用寿命和安全陛,减少重大经济损失。 对于齿轮箱和发电机往往采用弹性元件与机架联 接固定,由于这两个部件是机组中主要的振动和噪声 源,因此起关键的减振和隔振作用的弹性元件的性能 对整个传动链动力学特性以及振动能量的传递等都有 较大的影响。为获得良好的隔振效果,弹性元件参数 选择和机组的结构设计变得非常重要。从查阅的相关 资料来看,对齿轮箱动力学研究较多 ,也有文章单 独对弹性元件本身性能进行研究 J,还有将驱动链 的整个系统进行相关研究的 J,例如在船舶方面的相 关研究‘l ”J。但对风电机组中传动链使用的弹性元 件整个系统的研究较少l1 ,对其结构参数的设计只 是根据基本的振动理论方法进行,很少通过试验来验 证其设计的合理性。本文将以兆瓦级风力发电机组最 易发生振动的齿轮箱的弹性元件为例,对其隔振性能 进行理论分析,再通过现场试验获取相关试验数据,并 完成对试验数据的分析和研究,为整机设计提供参考。 1基本隔振理论分析 从图1和图2可知,齿轮箱的左右两端分别安装 了为4组瓦式结构的弹性元件,在垂直和水平方向都 具有一定的刚度值。可以选择一个方向来进行理论分 析,这里选择垂直方向。假定机架为完全刚性体,于是 齿轮箱、弹性元件与机架可以组成了一个单自由度的 系统,见图3。 《 坦f) 图2齿轮箱弹性支座 图3单自由度振动模型 Fig.2 Gearbox elastic suppo ̄Fig.3 Single DOF vibration model 1.1单自由度隔振分析 根据单自由度振动原理 ,系统隔振率为: K:.√(1.= 一A ) +4 A (1) ‘ 当 =0时,K与频率比A的关系为: =l I ,(IJn 詈。由式(1),对应于不同的阻尼比 ,可得出一系 列的K随A变化的曲线如图4所示。 。f /l\ =0 Il5 0.2O =0 576 0.50 J|■ 0.707 如1{ .=2.0 I II —J—~ -L 1 - 0 0.5 1.O 1.5 2.0 2.5 3.0 3.5 4.0 A= 图4单自由度传递函数曲线 Fig.4 Single DOF transfercurve 由此可见:不论阻尼大小,欲得隔振效果,即K<1, 必须 A=to> (3) ∞n 即 /k ,/m< (4) 因此在设计隔振器考虑如下三方面:①应采用刚 性系数较低的隔振器,A值越大,隔振效果越好,但在 实际风机设计中要综合考虑:若刚度过小,传动链的系 统频率就会降低,而风轮和主轴的运行工作频率也比 较低,其转速一般不超过20 r/min;还要考虑风机结构 特点,特别要避开风轮转频的1倍频、2倍频、3倍频和 6倍频,这些频率都比较小,往往是风机传动链振动的 激振源;其次还要考虑弹性元件除了起到隔振作用外 还要支撑齿轮箱的重量并传递风机的载荷,过小的刚 度值会使弹性元件的变形量超过设计要求,从而使齿 轮箱和发电机之间产生较大相对运到,机组运行不安 全;②系统固有频率要小于激励频率的0.707倍,对 于大型风电机组来说,齿轮箱传动比达到100左右,齿 轮箱的转速范围较大,如果在机组主要运行的转速区 域内的齿轮箱啮合频率能够达到这个要求,尽管在低 转速区隔振效果不理想,但由于低转速时振动能量较 小,不会对机组产生较大冲击,这种设计应该是满足要 求的;③增大阻尼可减小机器经过共振区时的最大振 幅,但在A>√2时却使K增大,即隔振效果降低,因此 阻尼的选择应权衡这两方面的得失,工程中 值一般 选用0.02~0.1范围。 214 振动与冲击 2016年第35卷 1.2传动链系统结构与弹性元件刚度的设计 1.3机架柔性时的隔振原理 由1.1节可知,A决定了振动效果,但当齿轮箱结 构确定了,其啮合频率也确定了,也就是说激励频率就 确定了,很难改变,而弹性元件的刚度可以进行适当调 节。再从文献[15]知道,传动链结构尺寸与齿轮箱系 统固有频率密切相关,将传动链进行模型简化如图5, 设机架为柔性体,可以将主机架模拟为一个有刚 度的弹簧和质量块的系统,再将塔架作为刚性基础,这 样就将前面的单自由度系统变成两自由度的振动系 统,模型如图7所示,图中 、 和C,为齿轮箱弹性 元件系统的等效质量,等效刚度和阻尼, 、 和C。 由于轴承为调心滚子,就可以转化成单自由度的摆振 模型,如图6。 图5传动链简化图 Fig.5 Reduced graph of drive train 图6振动模型 Fig.6 Vibration model 图中m 为齿轮箱质量,m 为轮毂和叶片质量,m 为主轴质量并假设其质量分布均匀,z 为齿轮箱重心距 主轴承距离, .为轮毂中心距主轴承距离,Z为弹性元件 距主轴承距离,若不计阻尼,则有微分方程: 彩+kl =0 (5) 转动惯量: 1 . . . ,:÷m z +m^z +mg (6) 则其固有频率如下: 1厂—— √ —一… 由于齿轮箱弹性元件有四组,芝因此上式中,k为 弹性元件的并联刚度。 可见,齿轮箱系统频率不仅与弹性元件刚度有关, 还与机组的结构设计有关,也就是说也可以通过微调 传动链结构来调整固有频率的大小,因此在设计弹性 元件时必须综合考虑各种因素才能满足系统要求。 但是还应注意到以上结论推导是建立在机架完全 刚性的前提下的,并没有考虑到实际风电机组的机架 为铸件或者焊接件,是一个柔性体部件,因此反应在试 验中会发现弹性元件的传递函数曲线与图4并不一 致,实际测得主要影响频率并非只有齿轮箱的第一级 最小啮合频率,还有其它啮合频率影响。 为柔性机架的等效质量、等效刚度和阻尼。 xi(t) F (『) l l > 1 c l(0 F2(t) l l 图7两自由度隔振系统 Fig.7 Two DOF vibration system 则系统的运动微分方程如下 H : l 1+Cl(X1一 2)+ l( 1一X2)=F 2 2+C2 + 2+C1( — 1)+ (8) ( 一X。):F2 F =C2X2+ 当不考虑阻尼时,力和位移的传递函数为: :—丁———-———— ———————_-一=—— ————■———————————————————■一(盖) 一[-+1+ ) 2](盖) +, L(9) 式中0.)12::√( + )/M2,为固定M 时系统的固有 频率,相当于不考虑 时单自由度系统的频率;ocrt:= √ 。 /( 。+ )/M ,同样相当于 完全固定时的 系统固有频率;很显然CO为齿轮箱内部激励频率。若 不考虑阻尼其传递函数曲线如图8。 可见两自由度隔振系统传递函数曲线在频域内有 两个峰值,对应于系统的两阶固有频率。可以进一步 分析风电机组的这两个固有频率,由于机架刚度相对 于齿轮箱弹性元件的刚度很大,因此 n 一 ̄/K。/ 。, ∞n / ,相当于两个单自由度的固有频率,而且 由于机架的刚度大,COn 值应该较大。 第10期 晏红文等:大型风力发电机组弹性元件隔振性能分析和试验研究 2l5 替 啦 图8两自由度传递函数曲线 Fig.8 Two DOF transfer function curve 2现场试验和分析 现场试验主要目的是两方面:①是从获得的试验 数据来分析弹性元件的隔振效果;②是从试验数据中 提取传递函数,从而验证齿轮箱系统振动模型简化为 两自由度的合理性。齿轮箱弹性元件一般是轴瓦式结 构,见图2和图9。选择某大型机组进行试验,试验时在 齿轮箱弹性元件安装座、一 .尽一 一 .III齿轮箱箱体上以及机架上选择 ^ .g 一 .g一 s.曩— 一 .gv 合适位置布置三个方向的加速度传感器,OO 00 OO OO 00 OO ^j1^,1l^j,^j1l^j并针对发电机 1J^jl 在不同的转速工况下进行试验¨ -17],对比齿轮箱和机架 在相同方向上振动加速度的差异性,分析判断弹性元件 设计的合理陛。该机型转速范围为700~1 200 r/m ̄n,因 此选择800 r/min、900 r/min、1 000 r/rain、1 100 r/rain和 l 200 r/min,共5个转速工况进行试验。 图9加速度传感器齿轮箱和机架布点示意图 Fig.9 Acceration sensors on gearbox and mainframe 2.1齿轮箱振动分析 首先将从齿轮箱箱体上采集的数据进行频率特性 分析,来判断齿轮箱振动激励情况,找出主要激励源的 频率。图10为900 r/min和1 100 r/min工况时箱体三 个方向的振动幅值谱图,其中上面三条谱线对应900 r/min工况,下面三条谱线对应1 100 r/min工况,其主 要激励频率都用箭头和阿拉伯数字标出,将此谱线图 中各级波峰频率的具体值转换为表1。 表1齿轮箱频率波峰值 Tab.1 Frequency peak values of gearbox 转速r/min 1 2 3 4 5 6 7 8 9 10 11 12 900 16.6 33.5 49.1 65.3 81.4 162 243 324 403 807 l 206 1 612 l】0o 19.8 39.7 59.6 79.8 99】98 297 396 494 988 l 582 1 996 根据齿轮箱的参数,900 r/min和1 100 r/min转速 下的最小啮合频率(亦即第一级齿轮啮合频率)分别为 16.2 Hz和19.9 Hz,因此表l中频率有明显的倍频特 : !Q ^ ~~一… { 向 O 5 1O 15 20 25 fx 102/Hz /’×10VHz !12 !。! 12 …j z向 O 5 10 l5 20 25 ,×102/Hz 图10工况900 r/min和1 100 r/rain频率幅值谱 Fig.10 Frequency amplitudes in 900 r/min and 1 100 r/min c¥tses 征,其中前4阶分别是以两种转速下的最小啮合频率 为基频的四倍频,与齿轮箱在两个转速下的第一级啮 合频率一致;5—8阶分别是以81.4 Hz和99 Hz为基频 的四倍频,根据齿轮箱参数与第二级啮合频率一致;最 后面4阶分别是以403 Hz和494 Hz为基频的四倍频, 同样根据齿轮箱参数可知与第三级啮合频率一致。因 此齿轮箱箱体振动源主要来自于其内部的齿轮啮合激 励。再看看三个方向的功率谱值,将表1中1 100 r/min转速下的12阶频率对应的三个方向功率谱值用 图11来表示,从图中可以很明显的特点:齿轮箱箱体 振动能量主要在z方向,这一点从齿轮箱安装结构也 可以分析得到:由于齿轮箱激励主要来自垂直于轴向 的旋转运动,所以在x方向(轴向)振动能量较小;在横 向虽然会接受到啮合激励,但是并没有象垂向那样还会 叠加齿轮箱重力方向的振动能量,所以图中较真实反应 了三个方向的振动能量分布。从振动能量集中的频率来 看,齿轮箱的振动能量主要是较高的频率段,而且对应于 齿轮箱的第二级和第三级啮合频率,比第一级啮合频率 对应的能量要大很多。这方面的原因也可以从齿轮箱结 构来进行分析,第一级齿轮转速相对于第二、三级的转速 很低,如果齿轮等相关零件加工精度相当的情况下,转速 越高,振动会越剧烈,振动能量相应更高。因此在弹性元 件设计时需要考虑具体的情况。 O 0 絮。 禁 lfHz 图11工况1 100 r/min箱体三个方向功率谱值 Fig.11 Power spetrum of l 100 r/min ease in three directions ON gearbox 216 振动与冲击 2016年第35卷 2.2弹性元件隔振性能分析 接的部件较多,机架上除安装了齿轮箱外,还有其它运 首先从频率方面来看,根据该机组传动链结构参 数和1.2节公式计算出系统固有频率为11.5 Hz。要 达到K<1的隔振效果,其最小啮合频率应该大于16.2 Hz,通过计算发电机转速对应为895 r/min。因此该机 动部件,这些振动能量会相互传递,再加上一些干扰因 素等,会导致测量的数据会存在偏差,这一问题可以从 试验得到的传递函数曲线对应的数据相干性分析中看 到。图13的上图为1 100 r/min转速下的传递函数曲 组在转速大于895 r/min一直到额定转速,弹性元件会 有较好的隔振效果;而在转速小于895 r/min时,弹性 线,下图为对应的相干系数曲线。可见相干系数多数 都远小于1,数据的相干性小,传递函数曲线不真,数据 元件隔振效果会不够理想。但在机组的绝大多数运行 时间内,特别是额定转速附近,弹性元件有良好的隔振 需重新处理。可以采取的方法是通过对数据分析,选 取那些真实可靠的数据,例如可以选择相干系数较高 性能,可以认为弹性元件刚度设计满足要求。如要在 小转速下提高其隔振性能,就需要减小其刚度值。根 据i.1节所知,在外载的作用下,小刚度的弹性元件会 产生较大变形使齿轮箱的振动位移增大,发电机和齿 轮箱输出轴中心线之间的偏移量增大,会超出联轴器 的纠偏范围,反而会严重影响机组传动链动力学性能。 另外由于传递率不容易测量,隔振器的隔振效果一般 采用振级落差这个指标来衡量,根据文献[18]可知,振 1 级落差和传递率之差约等于:201g M/ L_ (dB),其中 F z 和z 分别为机器和机架的机械阻抗。对于大型风 电机组传动链的主轴和齿轮箱系统与机架系统质量基 本相当,阻抗相差不会较大,可用振级落差代替传递率 进行评价,因此通过对比分析振源部件与隔振对象之 间的振动有效值,就可以很直观的反应隔振效果。同 样在设计弹性元件时,也可以采用此方法来验证。对 于齿轮箱弹性元件,主要是齿轮箱箱体与机架之间振 动值对比。根据如下公式¨ ,用图12表示了三个方向 的振级落差大小。 L=201g 一 ’(10) RMs 式中, 和XtRMS分别是与弹性元件联接的齿轮箱和 机架振动信号的有效值。 25 -o 转5 由该图可知,平均值达到l5 dB,弹性元件隔振效 果明显,其中z方向隔振性能优于XY方向,转速影响 较小。 2.3试验分析 从图1可知,风电机组传动链较复杂,与齿轮箱联 的点值绘制传函曲线。从图l3中选取15个点值绘制 的传函曲线如图14。在l0 Hz附近传函曲线有一个大 于0的波峰,这应该是传函曲线的第1个波峰,即系统 固有频率11.5 Hz处,在一个较大的频率处还有一个波 峰值,应该是机架的柔性所致,两自由度传递函数曲线 比较吻合,这也验证了前面的理论分析。 碍2 。 {l 123456789 10 O 婶 玑iI【 ... l,lj fx I ̄/Hz 图13 1 100 r/min工况z向传递函数及相干系数 Fig.13 Trans ̄r function and coherent toemcient in Z direction 1 10o r/min 5 O f t 0.8 1.2 1.6 一5 } 斟 翌。。 .15 、 —2O ’’ 八 一25 图14 1 100 r/min工况Z向传递函数 Fig.14 Trans ̄r function in Z direction 1 100 r/min 3结论 通过将复杂的风电机组传动链系统模拟成两自由 度系统的理论分析和试验验证可知,齿轮箱弹性元件 系统并不是简单的单自由度系统,进行分析时还应该 考虑机架的弹性,将机架纳入到系统中并模拟成两自 由度系统更加合理;在进行机组传动链系统及部件设 计时,必须要综合考虑各部件的振动特性,特别要注意 第lO期 晏红文等:大型风力发电机组弹性元件隔振性能分析和试验研究 217 传动链系统频率与弹性元件性能和传动链系统结构是 密切关联的;另外,弹性元件的刚度值并非越小越好, 太小的刚度会使其变形量大,系统可能出现不稳定;相 反太大的刚度值又会使机组主要运行转速区隔振效果 差,产生较大冲击,影响机组寿命和安全性。要确保传 动链系统和弹性元件设计合理,除理论分析外,必须经 过相关试验来进行验证;最后,针对复杂振动系统,提 出一种提取信号峰值来绘制传函曲线的方法,这种方 法是否准确需要进行大量的试验进行更充分的验证。 弹性元件在大型风力机组中应用较广,除了齿轮箱外, l 9 l Peeters J.Simulation of dynamic drive train loads in a wind turbine[D].Leuven,Belgium:Katholieke Universities Leuven,2006. [10]张懿时,童宗鹏,周炎,等.船舶齿轮箱硬弹性隔振技术 研究[J].噪声与振动控制,2013,33(3):153—155. ZHANG Yi・shi,TONG Zong—peng,ZHOU Yah,et a1. Research of hard elastic isolation technology of marine gearboxes[J].Noise and Vibration Control,2013,33(3): 153—155. [11]戴光昊,高长伟,刘永恒,等.弹性安装齿轮箱抗冲击特性 时域计算分析[J].噪声与振动控制,2012(6):62—65. DAI Guang—hao,GAO Chang—wei,LIU Yong-heng,et a1. Computation and analysis of shock characteristics of elastically 还有发电机以及经常处于旋转运动状态的轮毂控制柜 等部件,相应的弹性元件参数设计可以采用类似的方 法确定。 参考文献 supported gearbox in time domain[J].Noise and Vibration Control,2012(6):62—65. [12]胡伟辉,林胜,秦中正,等.大功率风力发电机组齿轮箱减 振支撑的结构特点与应用[J].机械,2010,36(4):74— 77. [1]杨校生,祁和生,徐涛.风电产业发展展望[c]/i风能产业 2013中国农业机械工业协会风能设备分会2013年度论 文集. HU Wei-hui,LIN Sheng,QIN Zhong—zheng,et a1.The structure and application of gearbox suspension in high—power [2]Licari J,Ugalde-Loo C E,Ekanayake J B.Damping of torsional vibrations in a variable—speed wind turbine[J]. Energy Conversion,IEEE Transactions on,2012,28(1): 172—180. wind turbine[J].Machinery,2010,36(4):74—77. [13]Haastrup M,Hansen M R,Ebbesen M K.Modeling of wind turbine gearbox mounting[J].Modeling,Identiifcation and Control,2011,32(4):141—149. [3]李宏坤,郭骋,房世利,等.齿轮箱减振降噪优化设计方法 研究[J].振动与冲击,2013,32(17):150—182. LI Hong-kun,GUO Cheng,FANG Shi-li,et a1.Optimization [14]朱坚石,楼京俊,何奇伟,等.隔振理论与隔振技术[M]. 北京:国防工业出版社,2008. [15]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版 社。2000. design method for gearbox’s vibration and noise reduction[J]. Journal of Vibration and Shock,2013,32(17):150—182. [16]王峰,方宗德,李声晋,等.多工况下人字齿轮传动系统结 [4]张庆伟,张博,王建宏,等.风力发电机齿轮传动系统的动 态优化设计[J].重庆大学学报,2010,33(3):30—35 ZHANG Qing-wei,ZHONG Bo,WANG Jian—hong,et a1. Analysis on torsional vibration of transmission system in wind 构减振分析与优化[J].振动与冲击,2014,33(22):127— 130. WANG Feng,FANG Zong—de,LI Sheng ̄in,et a1.Structural vibration analysis and optimization of herringbone gear generators gearbox[J].Journal of Chongqing University, 2010,33(3):30—35. transmission system under multiple loads[J].Journal of Vibration and Shock,2014,33(22):127—130. [5]Kahraman A,Vijayakar S M.Effect of internal gear flexibility on the quasistatie behavior of a plnetaary gear set[J].Mech Des,2001,123(3):408—415. [17]朱才朝,胥良,马飞,等.兆瓦级风电齿轮箱远程实时在线 测试及评价[J].振动与冲击,2012,31(20):18—22. ZHU Cai・chao,XU Liang,MA Fei,et a1.Remote real・time [6]周宏慧,张亚新,黄友剑,等.橡胶制品的组合静态性能分 析及计算[J].机械工程师,2009(6):64—66. ZHOU Hong-hui,ZHANG Ya-xin,HUANG You ̄ian,et a1. Analysis and calculation of static characteristics of rubber— online testing and evaluation for a megawatt wind turbine gearbox[J].Journal of Vibration and Shock,2012,31(20): 18—22. [18]严济宽,柴敏,陈小琳.振动隔离效果的评定[J].噪声与 振动控制,1997,6:22—30. YAN Ji—kuan,CHAI Min,CHEN Xiao—lin.Evaluation of rubber complex[J].Mechanical Engineer,2009(6):64— 66. [7]潘孝勇,上官文斌,柴国钟,等.橡胶隔振器动态特性计算 方法的研究[J].振动工程学报,20o9,22(4):345—351. PAN Xiao—yong,SHANGGUAN Wen-bin,CHAI Guo—zhong, et a1.An investigation of calculation methods for the dynamic vibration isolation effect[J].Noise and Vibration Control, 1997.6:22—30. [19]程广利,朱石坚,伍先俊.齿轮箱减振效果评估测试研究 [J].噪声与振动控制,20o4(2):22—24. CHENG Guang・li, ZHU Shi-jian, WU Xian-jun. Experimental research on the evaluation of the ship gearbox characteristics of rubber isolator[J].Journal of Vibration Engineering,2009,22(4):345—351. [8]Seiulli D,Inman D J.Isolation design for a flexible system [J].Journal of Sound and Vibration,1998,216(2):251— 267 vibration reduction effect[J].Noise and Vibration Control, 2004(2):22—24.