数学答案
1.B 2.A 3.B 4.C 5.C 6. C 7.A 8.C 9.AB 10.ABC 11.BD 12.AC 1.B 由题意知:Ay|0y2,Bx|x1,x1, 所以
RBBx|1x1,所以ARBx|0x1
2.A z42i13i,则z13i,zz13i13i10. 1i11,所以a0,0b1,c1,所以abc. 3h3h,
tan303.B 因为04.C 设山OT的高度为h,在Rt△AOT中,TAO30,AO在Rt△BOT中,TBO60,BOh3h,
sin603在△AOB中,AOB81.721.760,
由余弦定理得,AB2AO2BO22AOBOcos60; 即1403h221231h23hh, 332化简得h2332021; 1402;又h0,所以解得h14077即山OT的高度为2021(米). 5.C 依题意,S55a355Sn3.故选:C. 是等差数列,则数列an为等差数列,则S9a93n956.C 对于①,若,由l得到直线l,所以lm;故①正确;
,则l与m的位置关系不确定;
对于②,若,直线l在内或者l对于③,若lm,则m,由面面垂直的性质定理可得;故③正确;
对于④,若lm,则与可能相交;故④错误; 所以C选项是正确的. 7.A 由题意可知:ab4ab,又ab2ab,所以4ab2ab,可得ab当a4,b11;但ab,44111时,4矛盾;故选A 16ab8.C 正四面体外接球问题,所需要材料即为正四面体外接球体积与正四面体体积差。正四面体的
棱长为a,则正四面体的高为
36a6a6a,外接球半径为,内切球半径为.所以3D打印3412461123663233aaaaπa的体积为:Vπ,又a486,所以323812432V36π83113.0413.8499.2,故选C
9.AB 由表中数据,计算得x1123453,所以y4535140,于是得55096a185227700,解得a142,故A正确;由回归方程中的x的系数为正可知,y与x正相关,且其相关系数r0,故B正确,C错误;12月份时,x7,y320部,故D
错误.
x2y21,当点P为短轴顶点时,FPM最大,△FPM的面积最大,此时10.ABC 由椭圆
2516tanFPM24,此时角为锐角,故A正确、D错误;椭圆上的动点P,acPF1ac,7即有2PF18,又椭圆上至少有21个不同的点P,2,3,ii1,FP1,FP2,FP3,…
组成公差为d的等差数列,所以FP2,FP1最大值8,B正确;设FP1,FP3,…组成的等差数列为an,公差d0,则a12,an8,又d所以0dana1663,所以d,n1n12111033,所以d的最大值是,故C正确。 1010ππ3π2cosx,在,单调递减,所以
44411.BD ycoversinxversinxcosxsinxA错误;因为
coversinx1tanx2,则coversin2xversin2xcos2xsin2xversinx1cos2xsin2x2sinxcosx1tan2x2tanx7,即,所以B正确;对C:fx222cosxsinx1tanx5ππππversin2020xcoversin2020x2cos2020xsin2020x23636π2sin2020x,所以则fx的最大值4.
6ππversin1cos1sincoversin,故D正确。
22exex12.AC 若fxeax有3个零解,即ya与gx2有三个交点,若gx2,则
xxx2xexx2ex2xxex2gx则gx在,0上单调递增,在区间内的值域为0,,44xxe2gx在0,2上单调递减,在2,上单调递增,在此区间内的值域为,故ya与
4exe2gx2有三个交点,则a,故A正确
x4若aeexx,则fxexx2,fxeex,fxee,则fx在,1上单调22递减,在1,上单调递增,则fxmaxf10,故fx在R上单调递减,故B错误 若a11,则fxexx2,此时fx仅有1个零点x0,且x00,又221112118e,则,1xe0022228e212e2f1e110,f22e故C正确
若a1,则fxex,当x1时,f1e11x221e0,故D错误 e13.
414 由题意ab,又kab与2ab垂直,所以kab2ab0,所以k 52514.1, fx为奇函数且为增函数,fxf2x30 即为fxf32x;所以x32x,所以x1 15.
212 分类:(1)物理(历史)大类中有两门相同的方法:C4A324,共48种; 522(2)物理和历史两大类间有两门相同的方法:C4A212;所以在6门选考科目恰有两门科目
共60种;所以均选择物理的概率为
242 60516.2a,43a 由曲线的性质可得:△AF1F2、△BF1F2的内心M、N在直线xa上,设C3ππ,且MNMENE,在Rt△MF2E32的右顶点为E,直线AB的倾斜角为,则中,NF2E2,NEcatan2,
则MNMENEcatanπtan
222cossin2caπ1π22caca sin32sincossincos2222又e2,即c2a,故2aMN43a 33317.(1)证明:sinAB,sinAcosBcosAsinB,
551又sinAcosBcosAsinB
5sinAcosB21,cosAsinBtanA2tanB ····································· 5分 5543,tanAB 54(2)解:由(1)知cosAB即:
tanAtanB3,将tanA2tanB代入上式并整理得:2tan2B4tanB10
1tanAtanB462,tanA2tanB62. 2又因为B为锐角,tanB0,所以解得tanB ····································································································· 7分
CDCD23CD6, 设AB上的高为CD,则ABADDBtanAtanB62得CD262,
故AB边上的高为262. ···························································· 10分
18.(Ⅰ)设等差数列an的公差为d,等比数列bn的公比为qq0,
2203q32d由题得20b3a3a5b2,即
2034d3q解得d2,q3,所以,an2n1,bn3n; ····································· 6分 (Ⅱ)(1),cn11111nnn1bn33则anan12anan12n12n3111n32anan1Snc1c21111111cn3322a1a22a2a3nn313313111111
2a1an113232n343n13n ·故Sn································································ 12分 2n54(2),cnanbn2n13n;
Snc1c2cn335322n13n,①
3Sn3325332n13n1,②
23n2n13n1,
由①-②,得2Sn32232233即Snn3n1 ··················································································· 12分 (3)cn2an322n41111 n1nn1anan1bn12n12n33anbnan1bn12n132n33cn1111a1b1a2b2a2b2a3b31111 anbnan1bn1a1b1an1bn1则Snc1c2故Sn11 ······································································· 12分 92n33n119.解:因为直三棱柱ABCA1B1C1,所以AA1平面ABC,因为
AB,AC平面ABC,所以AA1AB,AA1AC,又因为
BAC90,
所以建立分别以AB,AC,AA1为x,y,z轴的空间直角坐标系
Axyz.
(1)设a1,则ABAC1,AA1,各点的坐标为A0,0,0,
2E1,0,,A10,0,,F0,1,.
33AE1,0,,A1F0,1,. ····················································· …2分
33因为AEA1F129,AEA1F29,
又异面直线AE与A1F所成角的大小为
, 3所以COSAE,A1F122991.所以3. ··································· …6分 2b2bb2b(2)因为Ea,0,,F0,a,.AEa,0,,AF0,a,
3333设平面AEF的法向量为n1x,y,z,则n1AE0,且n1AF0. 即axbz2bz0,且ay0. 33b2bb3,y.又, 3a3aa2令z1,则x2b1b所以n1,,1,1,1是平面AEF的一个法向量.
3a3a22bb1同理,n2,,11,,1是平面A1EF的一个法向量. ···················· 10分
3a3a2所以n1n20,所以平面AEF平面A1EF, 当
3时,二面角AEFA1的大小为 ··········································· 12分 2220.解:(1)根据所给的表格中的数据和题意写出
x3 Q1xgxxfx144x10x0 ································· 2分
3x3同理可得:Q2xgxxfx81x10x0 ·························· 4分
3x3 Q3xgxxfx50x10x0 ·································· 6分
3x3(2)由期望定义可知E0.4Q1x0.4Q2x0.2Q3x100x10x0
3 ····································································································· 8分
x3(3)可知E是产量x的函数,设hx100x10x0
3则hxx2100x0, ······························································· 10分 令hx0,则x10.
由题意及问题的实际意义可知,当x10时,hx取得最大值,即E最大时的产量
为10. ·························································································· 12分 21.(1)将yx2代入y22px,得x22px 化简得:x242px40
所以x1x24,x1x242p;························································ …2分 因此:y1y2x12x22x1x22x1x244p 又OAOB,所以x1x2y1y20;得p1,
抛物线的方程y22x ········································································ 5分
2y02y12y22,y0,,y1,,y2,由C、M、(2)证明:设M、E、F坐标分别是222E共线,得y0y12y0y18,所以y1同理:由D、M、F共线,得y22y08 y028 ·················································· 8分 y0所以直线EF的方程为:y1y2yy1y22x ········································ 10分 将y12y088,y2代入直线EF方程得2x2yy0244x82y80,所
y0y02xy0以4x0,方程组有解xy4,所以直线EF恒过定点4,4 ············ 12分 2y8022.解:(1)fx定义域0,,fx11ax axx则当a0时fx在0,为增函数; ················································· 2分
11当a0时fx在0,为增函数,在,为减函数 ··························· 4分
aa(2)证明:(ⅰ)原不等式等价于得,ax2x1lnx2lnx1则a则
x1x21,因为ax1lnx1①ax2lnx2②由②-①2alnx2lnx1,
x2x1xxx2x1x1x21 等价于122lnx2lnx12a因为x2x10所以lnx2lnx10即证lnx2lnx1x221xx等价于ln210
xx112x12x2x1③
x1x2设t2t1x2,t1设gtlnt,t1 x11t2t112gt0 ③等价于gt0,22t1ttt1x221xxgt在1,上为增函.ln210
xx112x1gtg10,即(ⅱ)设hxx1x21···························································· 8分 ·
2alnx1lnx,则hx 2xx所以hx在0,e上递增,在e,上递减 因为ahx有两个不相等的实根,则0a1且1x1ex2 e11x对x0,1恒成立 x易知lnxx1对x0,11,恒成立,则lnax11lnx11lnx1e1,因为x10,所以ax122x1e0 ex111ea11ea或x1 aaaa又因为a0,44ae0,所以x1因为0x1e且0a11ea1,所以x1
aaex1x2111eax1x21因为x1,所以 2aaa2a即x2x121ea ·········································································· 12分 a
因篇幅问题不能全部显示,请点此查看更多更全内容