ggpubr: 'ggplot2' Based Publication Ready Plots
一款基于ggplot2的可视化包ggpubr,能够一行命令绘制出符合出版物要求的图形。
1. R包的安装及加载
ggpubr包可以从CRAN或GitHub中进行下载安装
install.packages("ggpubr")
library(ggpubr)
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/ggpubr")
library(ggpubr)
2. 常用基本图形的绘制
分布图绘制(Distribution)
01. 带有均值线和地毯线的密度图
图一#构建数据集
set.seed(1234)
df <- data.frame( sex=factor(rep(c("f", "M"), each=200)),
weight=c(rnorm(200, 55), rnorm(200, 58)))
# 预览数据格式
head(df)
# 绘制密度图
ggdensity(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800")) #rug参数添加地毯线,add参数可以添加均值mean和中位数median
图1. 密度图展示不同性别分组下体重的分布,X轴为体重,Y轴为自动累计的密度,X轴上添加地毯线进一步呈现样本的分布;按性别分别组标记轮廓线颜色,再按性别填充色展示各组的分布,使用palette自定义颜色,是不是很舒服。
02. 带有均值线和边际地毯线的直方图
图二gghistogram(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800"))
图2. 带有均值线和边际地毯线的直方图,只是把密度比例还原为了原始数据counts值
箱线/小提琴图绘制(barplot/violinplot)
01. 箱线图+分组形状+统计
图三#加载数据集ToothGrowth
data("ToothGrowth")
df1 <- ToothGrowth
head(df1)
p <- ggboxplot(df1, x="dose", y="len", color = "dose",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
add = "jitter", shape="dose") #增加了jitter点,点shape由dose映射
p
图3. 箱线图按组着色,同时样本点标记不同形状可以一步区分组或批次
02. 箱线图+分组形状+统计
图四# 增加不同组间的p-value值,可以自定义需要标注的组间比较
my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2"))
p+stat_compare_means(comparisons = my_comparisons)+ #不同组间的比较
stat_compare_means(label.y = 50)
图4. stat_compare_means添加组间比较连线和统计P值
03. 内有箱线图的小提琴图+星标记
图五ggviolin(df1, x="dose", y="len", fill = "dose",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
add = "boxplot", add.params = list(fill="white"))+
stat_compare_means(comparisons = my_comparisons, label = "p.signif")+ #label这里表示选择显著性标记(星号)
stat_compare_means(label.y = 50)
图5. ggviolin绘制小提琴图, add = “boxplot”中间再添加箱线图,stat_compare_means中,设置lable=”p.signif”,即可添加星添加组间比较连线和统计P值按星分类。
条形/柱状图绘制(barplot)
图六data("mtcars")
df2 <- mtcars
df2$cyl <- factor(df2$cyl)
df2$name <- rownames(df2) #添加一行name
head(df2[, c("name", "wt", "mpg", "cyl")])
ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white",
palette = "npg", #杂志nature的配色
sort.val = "desc", #下降排序
sort.by.groups=FALSE, #不按组排序
x.text.angle=60)
图6. 柱状图展示不同车的速度,按cyl为分组信息进行填充颜色,颜色按nature配色方法(支持 ggsci包中的本色方案,如: “npg”, “aaas”, “lancet”, “jco”, “ucscgb”, “uchicago”, “simpsons” and “rickandmorty”),按数值降序排列。
# 按组进行排序
图七ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white",
palette = "aaas", #杂志Science的配色
sort.val = "asc", #上升排序,区别于desc,具体看图演示
sort.by.groups=TRUE,x.text.angle=60) #按组排序 x.text.angle=90
图7. 由上图中颜色改为Sciences配色方案,按组升序排布,且调整x轴标签60度角防止重叠。
偏差图绘制(Deviation graphs)
偏差图展示了与参考值之间的偏差
图八df2$mpg_z <- (df2$mpg-mean(df2$mpg))/sd(df2$mpg) # 相当于Zscore标准化,减均值,除标准差
df2$mpg_grp <- factor(ifelse(df2$mpg_z<0, "low", "high"), levels = c("low", "high"))
head(df2[, c("name", "wt", "mpg", "mpg_grp", "cyl")])
ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white",
palette = "jco", sort.val = "asc", sort.by.groups = FALSE,
x.text.angle=60, ylab = "MPG z-score", xlab = FALSE, legend.title="MPG Group")
图8. 基于Zscore的柱状图,就是原始值减均值,再除标准差。按jco杂志配色方案,升序排列,不按组排列。
# 坐标轴变换
图九ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white",
palette = "jco", sort.val = "desc", sort.by.groups = FALSE,
x.text.angle=90, ylab = "MPG z-score", xlab = FALSE,
legend.title="MPG Group", rotate=TRUE, ggtheme = theme_minimal()) # rotate设置x/y轴对换
图9. rotate=TRUE翻转坐标轴,柱状图秒变条形图
棒棒糖图绘制(Lollipop chart)
棒棒图可以代替条形图展示数据
图十ggdotchart(df2, x="name", y="mpg", color = "cyl",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
sorting = "ascending",
add = "segments", ggtheme = theme_pubr())
图10. 柱状图太多了单调,改用棒棒糖图添加多样性
设置其他参数
图十一ggdotchart(df2, x="name", y="mpg", color = "cyl",
palette = c("#00AFBB", "#E7B800", "#FC4E07"),
sorting = "descending", add = "segments", rotate = TRUE,
group = "cyl", dot.size = 6,
label = round(df2$mpg), font.label = list(color="white",
size=9, vjust=0.5), ggtheme = theme_pubr())
图11. 棒棒糖图简单调整,rotate = TRUE转换坐标轴, dot.size = 6调整糖的大小,label = round()添加糖心中的数值,font.label进一步设置字体样式
棒棒糖偏差图
图十二ggdotchart(dfm, x = "name", y = "mpg_z",
color = "cyl", # Color by groups
palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
sorting = "descending", # Sort value in descending order
add = "segments", # Add segments from y = 0 to dots
add.params = list(color = "lightgray", size = 2), # Change segment color and size
group = "cyl", # Order by groups
dot.size = 6, # Large dot size
label = round(dfm$mpg_z,1), # Add mpg values as dot labels,设置一位小数
font.label = list(color = "white", size = 9, vjust = 0.5), # Adjust label parameters
ggtheme = theme_pubr() # ggplot2 theme
)+
geom_hline(yintercept = 0, linetype = 2, color = "lightgray")
图12. 同柱状图类似,用Z-score的值代替原始值绘图。
Cleveland点图绘制
图十三ggdotchart(dfm, x = "name", y = "mpg",
color = "cyl", # Color by groups
palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
sorting = "descending", # Sort value in descending order
rotate = TRUE, # Rotate vertically
dot.size = 2, # Large dot size
y.text.col = TRUE, # Color y text by groups
ggtheme = theme_pubr() # ggplot2 theme
)+
theme_cleveland() # Add dashed grids
图13. theme_cleveland()主题可设置为Cleveland点图样式
3. 常用基本绘图函数及参数
基本绘图函数
基本参数