搜索
您的当前位置:首页正文

安装 pRRophetic 包

来源:哗拓教育

从文档看这个包可以用基因表达数据预测表型和药物反应。

这是一个感觉有点古老的包,特别大。

我们先安装它的依赖包:

BiocManager::install(c('sva', 'car', 'genefilter', 'preprocessCore', 'ridge'))

这里 BiocManager 包需要提前安装好,使用 install.packages("BiocManager") 即可。

wget -O pRRophetic_0.5.tar.gz  https://osf.io/dwzce/?action=download

下载之后进行安装,在 R 控制台运行命令:

install.packages("pRRophetic_0.5.tar.gz", repos = NULL, dependencies = TRUE)

测试

安装好之后我们需要测试下包能不能正常使用,这里就跟着文档做个几步看看。

先载入包和进行设置:

> library(pRRophetic)
Warning message:
replacing previous import ‘car::Anova’ by ‘genefilter::Anova’ when loading ‘pRRophetic’ 
> set.seed(1234)

载入数据,画个图看看:

> data("bortezomibData")
> pRRopheticQQplot("Bortezomib")

五折交叉验证,这一点我的电脑有点 hold 不住:

> cvOut <- pRRopheticCV("Bortezomib", cvFold=5, testExprData=exprDataBortezomib)

 11683  gene identifiers overlap between the supplied expression matrices... 
 
Found2batches
Adjusting for0covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data


1 of 5 iterations complete.
2 of 5 iterations complete.
3 of 5 iterations complete.
4 of 5 iterations complete.
5 of 5 iterations complete.

画个结果图:

> plot(cvOut)

一般般的效果:

模型结果还是显著的:

> summary(cvOut)

Summary of cross-validation results:

Pearsons correlation: 0.4 , P =  4.45287272844977e-12 
R-squared value: 0.16
Estimated 95% confidence intervals: -4.23, 4.23
Mean prediction error: 1.64

有了模型就可以做预测了:

> predictedPtype <- pRRopheticPredict(exprDataBortezomib, "Bortezomib",
+                                     selection=1)

 11683  gene identifiers overlap between the supplied expression matrices... 
 
Found2batches
Adjusting for0covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments
Adjusting the Data


 2324 low variabilty genes filtered.
Fitting Ridge Regression model... Done

Calculating predicted phenotype...Done
Top